Тиами́н (витамин B1; старое название — аневрин) — органическое гетероциклическое соединение, водорастворимый витамин, отвечающий формуле C12H17N4OS. Бесцветное кристаллическое вещество, хорошо растворимое в воде, нерастворимое в спирте (есть и жирорастворимый аналог витамина B1 (тиамина) — бенфотиамин). Водные растворы тиамина в кислой среде выдерживают нагревание до высоких температур без снижения биологической активности. В нейтральной и особенно в щелочной среде витамин B1, наоборот, быстро разрушается при нагревании.[1] На сегодняшний день известно четыре формы тиамина в организме человека: нефосфорилированный тиамин, тиаминмонофосфат, тиаминдифосфат (он же тиаминпирофосфат) и тиаминтрифосфат. Тиаминдифосфат является самой распространенной формой тиамина.

Тиамин
Изображение химической структуры
Изображение молекулярной модели
Общие
Систематическое
наименование
3-​[​(4-​амино-​2-​метил-​5-​пиримидил)​ метил]-​5-​​(2-​гидроксиэтил)​-​4-​метил-​тиазол
Хим. формула C12H17N4OS⁺
Рац. формула C12H17N4OS
Физические свойства
Молярная масса 265,4 г/моль
Термические свойства
Температура
 • плавления 248—250 °C
Классификация
Рег. номер CAS 59-43-8
PubChem
SMILES
InChI
ChEBI 18385
ChemSpider
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе
Тиамин
Изображение химической структуры
Химическое соединение
Брутто-формула C12H17N4OS⁺
CAS
PubChem
DrugBank
Состав
Классификация
АТХ
Другие названия
Аневрин, Витамин B1, тиамина бромид, тиамина гидрохлорид, тиамина хлорид, нефосфорилированный тиамин
Логотип Викисклада Медиафайлы на Викискладе

Более известный как витамин B1, тиамин играет важную роль в процессах метаболизма углеводов, жиров и белков. Тело человека может хранить до 30 мг тиамина в тканях. Тиамин в основном сосредоточен в скелетных мышцах. Другие органы, в которых он найден, — это мозг, сердце, печень и почки. Вещество необходимо для нормального роста и развития и помогает поддерживать надлежащую работу сердца, нервной и пищеварительной систем. Тиамин, являясь водорастворимым соединением, не запасается в организме и не обладает отравляющими свойствами. Недостаток тиамина, возникающий при плохом питании и чрезмерном употреблении алкоголя, приводит к синдрому Вернике — Корсакова и авитаминозу. Эти расстройства характеризуются неисправностями в нервной системе, которые могут быть восстановлены при высоком уровне потребления тиамина и соответствующей диете.

История править

Христиан Эйкман предположил существование паралитического яда в эндосперме риса и наличие полезных для организма веществ в рисовых отрубях, излечивающих болезнь бери-бери. За исследования, которые привели к открытию витаминов, Эйкман получил в 1929 году Нобелевскую премию в области медицины. В 1911 году Казимир Функ получил биологически активное вещество из рисовых отрубей, которое назвал витамином, так как его молекула содержала азот.

В чистом виде впервые выделен Б. Янсеном в 1926 году.

Физико-химические свойства править

Тиамин хорошо растворим в воде. В кислых водных растворах весьма устойчив к нагреванию, в щелочных — быстро разрушается.[источник не указан 3000 дней]

Молекула содержит два соединённых метиленовой связью кольца: пиримидиновое и тиазоловое.

Метаболическая роль и обмен править

 
Тиаминпирофосфат

В природе тиамин синтезируется растениями и многими микроорганизмами. Большинство животных и человек не могут синтезировать тиамин и получают его вместе с пищей. В тиамине нуждаются все животные за исключением жвачных, так как бактерии в их кишечнике синтезируют достаточное количество витамина.

Всасываясь из кишечника, тиамин фосфорилируется и превращается в тиаминпирофосфат.

Тиаминпирофосфат (ТПФ, англ. TPP) — активная форма тиамина — является коферментом пируватдекарбоксилазного и α-кетоглутаратдегидрогеназного комплексов, а также транскетолазы. Первые два фермента участвуют в метаболизме углеводов, транскетолаза функционирует в пентозофосфатном пути, участвуя в переносе гликоальдегидного радикала между кето- и альдосахарами. ТПФ синтезируется ферментом тиаминпирофосфокиназой, главным образом в печени и в ткани мозга. Реакция требует присутствия свободного тиамина, ионов Mg2+ и АТФ. Также ТПФ выступает коферментом дегидрогеназы γ-оксиглутаровой кислоты и пируватдекарбоксилазы клеток дрожжей.

Другими производными тиамина являются:

  • Тиаминтрифосфат, обнаружен у бактерий, грибов, растений и животных[2], у E. coli играет роль сигнальной молекулы при ответе на аминокислотное голодание[3].
  • Аденозинтиаминдифосфат — накапливается у E. coli в результате углеродного голодания[4].
  • Аденозинтиаминтрифосфат — присутствует в небольших количествах в печени позвоночных, функция его неизвестна[5].

Гиповитаминоз править

Системный недостаток тиамина является причиной развития ряда тяжёлых расстройств, ведущее место в которых занимают поражения нервной системы. Комплекс последствий недостаточности тиамина известен под названием болезни бери-бери и синдрома Корсакова-Вернике.

Как правило, развитие дефицита тиамина бывает связано с нарушениями в питании. Это может быть следствием недостаточного поступления тиамина с пищей либо происходить в результате избыточного употребления продуктов, содержащих значительные количества антитиаминовых факторов. Так, свежие рыба и морепродукты содержат значительные количества тиаминазы, разрушающей витамин; чай и кофе ингибируют всасывание тиамина.

При бери-бери наблюдаются слабость, потеря веса, атрофия мышц, невриты, нарушения умственной деятельности, расстройства со стороны пищеварительной и сердечно-сосудистой системы, развитие парезов и параличей.

Одной из форм бери-бери, встречающейся преимущественно в развитых странах, является Синдром Гайе — Вернике (иначе — синдром Вернике — Корсакова), развивающийся при алкоголизме.

Синдром Вернике — Корсакова является потенциально фатальным неврологическим расстройством, что наиболее часто встречается у алкоголиков. Алкоголь напрямую влияет на механизмы фосфорилирования/дефосфорилирования тиамина, что приводит к сильному уменьшению концентрации активной формы тиамина.

Энцефалопатия Вернике и Корсаковский психоз — два отдельных диагноза. Этот синдром вызывает повреждения головного мозга в третьем и четвёртом желудочке, таламусе и мамиллярных органах. Развитие болезни приводит к психозу и необратимому повреждению в областях мозга, связанных с памятью. Симптомы энцефалопатии Корсакова-Вернике включают:

  • путаницу и потерю умственной деятельности, что может прогрессировать до комы;
  • потерю мышечной координации (атаксию);
  • аномальные движения глаз, двоение в глазах;
  • неспособность сформировать новые воспоминания;
  • потерю памяти.

Лечение энцефалопатии Вернике включает внутривенное введение тиамина в течение 3—5 дней с последующим приемом высокой потенции B-витаминного комплекса, пока улучшение продолжается.

При нарушении обмена тиамина в первую очередь возникает расстройство окислительного декарбоксилирования α-кетокислот и частично блокируется метаболизм углеводов. У больных бери-бери происходит накопление недоокисленных продуктов обмена пирувата, которые оказывают токсическое действие на ЦНС и обусловливают развитие метаболического ацидоза. Вследствие развития энергодефицита снижается эффективность работы ионных градиентных насосов, в том числе клеток нервной и мышечной ткани. Нарушается синтез жирных кислот и трансформация углеводов в жиры. Усиление катаболизма белков ведёт к развитию мышечной атрофии, у детей — к задержке физического развития. Вследствие затруднения образования из пировиноградной кислоты ацетил КоА страдает процесс ацетилирования холина.

Экспериментальные исследования по депривации тиамина у мышей приводили к энергодефициту в печени, увеличению уровня лактата, уменьшению транскрипции генов, связанных с метаболизмом липидов и глюкозы[6].

Гипервитаминоз править

Гипервитаминоз для тиамина встречается крайне редко. Парентеральное введение витамина B1 в большой дозе может вызвать анафилактический шок вследствие способности тиамина вызывать неспецифическую дегрануляцию тучных клеток. Тиамин в фармакологических дозах (от 30 мг) в таблетках угнетает холинэстеразу и гистаминазу[источник не указан 2030 дней], вызывая соответствующие синдромы. Также вызывает дефицит меди, витаминов B2 и B3 в крови[источник не указан 2030 дней]. Леводопа постепенно вызывает гипервитаминоз B1[источник не указан 2030 дней] (возможно, именно поэтому сначала идёт улучшение от леводопы, а потом — ранее необъяснимое ухудшение). При фотодерматозах и СКВ регистрируется всегда повышенный фон B1 и дефицит B6, особенно после загара.

Распространение в пищевых продуктах править

Основные количества тиамина человек получает с растительной пищей. Богаты тиамином такая растительная еда, как пшеничный хлеб из муки грубого помола, соя, фасоль, горох, шпинат. Меньше содержание тиамина в картофеле, моркови, капусте. Из животной пищи содержанием тиамина выделяются печень, почки, мозг, свинина, говядина, также он содержится в дрожжах. В молоке его содержится около 0,5 мг/кг.[7] Витамин B1 синтезируется некоторыми видами бактерий, составляющих микрофлору толстого кишечника.

Нормы потребления тиамина (витамина B1) править

Пол Возраст Суточная норма тиамина (витамин B1)[8], мг/день
Младенцы до 6 месяцев 0,2
Младенцы 7 — 12 месяцев 0,3
Дети 1 — 3 года 0,5
Дети 4 — 8 лет 0,6
Дети 9 — 13 лет 0,9
Мужчины 14 лет и старше 1,2
Женщины 14-18 лет 1,0
Женщины 19 лет и старше 1,1

Примечания править

  1. Б.Ф.Коровкин. Биологическая химия. — 1998.
  2. Makarchikov A. F., Lakaye B., Gulyai I. E., Czerniecki J., Coumans B., Wins P., Grisar T and Bettendorff L. Thiamine triphosphate and thiamine triphosphatase activities: from bacteria to mammals (англ.) // Cell. Mol. Life Sci : journal. — 2003. — Vol. 60. — P. 1477—1488. — doi:10.1007/s00018-003-3098-4.
  3. Lakaye B., Wirtzfeld B., Wins P., Grisar T and Bettendorff L. Thiamine triphosphate, a new signal required for optimal growth of Escherichia coli during amino acid starvation (англ.) // J. Biol. Chem. : journal. — 2004. — Vol. 279. — P. 17142—17147. — doi:10.1074/jbc.M313569200. — PMID 14769791.
  4. Bettendorff L., Wirtzfeld B., Makarchikov A. F., Mazzucchelli G., Frédérich M., Gigliobianco T., Gangolf M., De Pauw E., Angenot L and Wins P. Discovery of a natural thiamine adenine nucleotide (неопр.) // Nature Chem. Biol.. — 2007. — Т. 3. — С. 211—212. — doi:10.1038/nchembio867.
  5. Frédérich M., Delvaux D., Gigliobianco T., Gangolf M., Dive G., Mazzucchelli G., Elias B., De Pauw E., Angenot L., Wins P. and Bettendorff L. Thiaminylated adenine nucleotides — chemical synthesis, structural characterization and natural occurrence FEBS J. (англ.) : journal. — 2009. — Vol. 276. — P. 3256—3268. — doi:10.1111/j.1742-4658.2009.07040.x.
  6. Alain de J. Hernandez-Vazquez, Josue Andres Garcia-Sanchez, Elizabeth Moreno-Arriola, Ana Salvador-Adriano, Daniel Ortega-Cuellar. Thiamine Deprivation Produces a Liver ATP Deficit and Metabolic and Genomic Effects in Mice: Findings Are Parallel to Those of Biotin Deficiency and Have Implications for Energy Disorders // Journal of Nutrigenetics and Nutrigenomics. — 2017-02-18. — Т. 9, вып. 5—6. — С. 287—299. — ISSN 1661-6758. — doi:10.1159/000456663. Архивировано 24 марта 2017 года.
  7. Источники витамина В1. В каких продуктах содержится витамин B1. Дата обращения: 12 декабря 2010. Архивировано из оригинала 24 ноября 2010 года.
  8. Thiamin. Дата обращения: 3 марта 2013. Архивировано 26 марта 2013 года.

Литература править

  • Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации : методические рекомендации : МР 2.3.1.2432-08 : [арх. 19 февраля 2016] / Утв. рук. Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Гл. гос. сан. врачом РФ Г. Г. Онищенко. — 2008. — 18 декабря. — 39 с. — (3.2.1. Рациональное питание).