Эффект Караша

(перенаправлено с «Эффект Хараша»)

Эффект Караша (эффект Хараша, перекисный эффект) — обращение региоселективности при присоединении галогеноводородов к алкенам в присутствии кислорода или перекисей. Данный эффект, впервые описанный М. Карашем и Ф. Майо в 1933 году[1], заключается в образовании аномального продукта, формально не соответствующего правилу Марковникова. Это связывают с изменением механизма реакции, которая в данном случае протекает не как электрофильное присоединение, а как радикальное присоединение[2].

Механизм править

Присоединение галогеноводородов к несимметричным алкенам в присутствии перекиси протекает по радикальному механизму. На стадии инициирования радикал R, полученный в результате разложения пероксидного катализатора, отщепляет от галогеноводорода атом водорода с образованием атома галогена, который на второй стадии присоединяется к двойной С=С-связи с образованием двух изомерных алкильных радикалов. Преобладающим является более замещённый, более устойчивый радикал, который затем реагирует с галогеноводородом, давая продукт — алкилгалогенид и атом галогена, продолжающий цепную радикальную реакцию[3].

 

Реакция катализируется пероксидами, однако их добавление извне необязательно, поскольку в присутствии кислорода алкены могут сами окисляться с образованием перекисей[4]. Наряду с радикальной реакцией происходит также классическое электрофильное присоединение, однако радикальная реакция имеет гораздо более высокую скорость, за счёт чего аномальный продукт образуется в преобладающем количестве[4].

Считается, что данный эффект характерен исключительно для бромоводорода HBr и не наблюдается в случае других галогеноводородов (HF, HCl и HI)[3][5] за счёт того, что молекулы HF и HCl слишком прочны для гомолитического разрыва, а молекула HI,хотя и имеет более низкую энергию связи, но образующийся атом йода недостаточно реакционноспособен и не может развить цепную реакцию. Тем не менее, известны примеры, когда HCl также реагирует с алкенами с образованием продуктов, не согласующихся с правилом Марковникова. Однако, такие примеры не очень распространены, и в общем случае при использовании HCl скорости электрофильного и радикального присоединения сопоставимы, что приводит к смеси продуктов[4]. Радикальное присоединение HCl к алкенам также может осложняться образованием олигомеров за счёт реакции алкильных радикалов с молекулами алкена[6].

Стереохимия присоединения править

Реакции радикального присоединения галогеноводородов к алкенам протекают как анти-присоединение, что объясняется образованием циклического бромониевого радикала, раскрытие которого происходит «с тыла»[6]. При повышении температуры селективность снижается, поскольку становится возможным вращение С-С-связи в промежуточном алкильном радикале[4]. Для циклоалканов, в молекулах которых такое вращение невозможно, наблюдается образование только транс-продуктов[4].

 

См. также править

Примечания править

  1. Kharasch M. S., Mayo F. R. The Peroxide Effect in the Addition of Reagents to Unsaturated Compounds. I. The Addition of Hydrogen Bromide to Allyl Bromide (англ.) // J. Am. Chem. Soc. — 1933. — Vol. 55, no. 6. — P. 2468–2496. — doi:10.1021/ja01333a041.
  2. Робертс Дж., Касерио М. Основы органической химии = Basic Principles of Organic Chemistry / Пер. с англ. Ю. Г. Бунделя, под ред. А. Н. Несмеянова. — М.: Мир, 1978. — Т. 1. — С. 215—217.
  3. 1 2 Терней А. Современная органическая химия. — М.: Мир, 1981. — Т. 1. — С. 323—324.
  4. 1 2 3 4 5 Сайкс П. Механизмы реакций в органической химии = A Guidebook to Mechanism in Organic Chemistry / Под ред. Я. М. Варшавского. — 3-е изд.. — М.: Химия, 1977. — С. 290—293.
  5. Реутов О. А., Курц А. Л., Бутин К. П. Органическая химия. — 3-е изд.. — М.: Бином. Лаборатория знаний, 2010. — Т. 1. — С. 416. — ISBN 978-5-94774-613-6.
  6. 1 2 Кери Ф., Сандберг Р. Углубленный курс органической химии / Под ред. В. М. Потапова. — М.: Химия, 1981. — Т. 1. — С. 476—478.