Яркость

Я́ркость источника света[1] — световой поток, посылаемый в данном направлении, делённый на малый (элементарный) телесный угол вблизи этого направления и на проекцию площади источника[2] на плоскость, перпендикулярную оси наблюдения. Иначе говоря — это отношение силы света, излучаемого поверхностью, к площади её проекции на плоскость, перпендикулярную оси наблюдения.

В определении, данном выше, подразумевается, если рассматривать его как общее, что источник имеет малый размер, точнее малый угловой размер. В случае, когда речь идёт о существенно протяжённой светящейся поверхности, каждый её элемент рассматривается как отдельный источник. В общем случае, таким образом, яркость разных точек поверхности может быть разной. И тогда, если говорят о яркости источника в целом, подразумевается вообще говоря усреднённая величина. Источник может не иметь определённой излучающей поверхности (светящийся газ, область рассеивающей свет среды, источник сложной структуры — например туманность в астрономии, когда нас интересует его яркость в целом), тогда под поверхностью источника можно иметь в виду условно выбранную ограничивающую его поверхность или просто убрать слово «поверхность» из определения.[источник не указан 3702 дня]

В Международной системе единиц (СИ) измеряется в канделах на м². Ранее эта единица измерения называлась нит (1нт=1кд/1м²), но в настоящее время стандартами на единицы СИ применение этого наименования не предусмотрено.

Существуют также другие единицы измерения яркости — стильб (сб), апостильб (асб), ламберт (Лб):

1 асб = 1/π × 10−4 сб = 0,3199 нт = 10−4 Лб.[3]

  • Вообще говоря, яркость источника зависит от направления наблюдения, хотя во многих случаях излучающие или диффузно рассеивающие свет поверхности более или менее точно подчиняются закону Ламберта, и в этом случае яркость от направления не зависит.
  • Последний случай (при отсутствии поглощения или рассеяния средой — см. ниже) позволяет в определении рассматривать и конечные телесные углы и конечные поверхности (вместо бесконечно малых в общем определении), что делает определение более элементарным, однако надо понимать, что в общем случае (к которому при требовании большей точности относятся и большинство практических случаев) определение должно основываться на бесконечно малых или хотя бы физически малых (элементарных) телесных углах и площадках.
  • В случае поглощающей или рассеивающей свет среды видимая яркость, конечно, зависит и от расстояния от источника до наблюдателя. Но само введение такой величины, как яркость источника, мотивировано не в последнюю очередь именно тем фактом, что в важном частном случае непоглощающей среды (в том числе вакуума) видимая яркость от расстояния не зависит, в том числе в том важном практическом случае, когда телесный угол определяется размером объектива (или зрачка) и уменьшается с расстоянием (падение с расстоянием от источника силы света точно компенсирует уменьшение этого телесного угла).
  • Существует теорема, утверждающая, что яркость изображения никогда не превосходит яркости источника[4][5].

Яркость Lсветовая величина, равная отношению светового потока , излучаемого участком поверхности в телесный угол , к геометрическому фактору  :

.

Здесь  — заполненный излучением телесный угол,  — площадь участка, испускающего или принимающего излучение,  — угол между перпендикуляром к этому участку и направлением излучения. Из общего определения яркости следуют два практически наиболее интересных частных определения:

1. Яркость элементарного участка излучающей поверхности, наблюдаемая под углом к нормали этой поверхности, равняется отношению силы света , излучаемого элементарной поверхностью в данном направлении, к площади проекции излучающей поверхности на плоскость, перпендикулярную данному направлению[6]:

Яркость

2. Яркость — отношение освещённости в точке плоскости, перпендикулярной направлению на источник, к элементарному телесному углу, в котором заключён поток, создающий эту освещённость:

Яркость измеряется в кд/м2. Из всех световых величин яркость наиболее непосредственно связана со зрительными ощущениями, так как освещённости изображений предметов на сетчатке глаза пропорциональны яркостям этих предметов. В системе энергетических фотометрических величин аналогичная яркости величина называется энергетической яркостью и измеряется в Вт/(ср·м2).

В астрономии править

В астрономии яркость — характеристика излучательной или отражательной способности поверхности небесных тел. Яркость слабых небесных источников выражают звёздной величиной площадки размером в 1 квадратную секунду, 1 квадратную минуту или 1 квадратный градус, то есть сравнивают освещённость от этой площадки с освещённостью, даваемой звездой с известной звёздной величиной.

Так, яркость ночного безлунного неба в ясную погоду, равная 2⋅10−4 кд/м², характеризуется звёздной величиной 22,4 с 1 квадратной секунды или звёздной величиной 4,61 с 1 квадратного градуса. Яркость средней туманности равна 19—20 звёздной величины с 1 квадратной секунды. Яркость Венеры — около 3 звёТздных величин с 1 квадратной секунды. Яркость площадки в 1 квадратную секунду, по которой распределён свет звезды нулевой звёздной величины, равна 92 500 кд/м². Поверхность, у которой яркость не зависит от угла наклона площадки к лучу зрения, называется ортотропной; испускаемый такой поверхностью поток с единицы площади подчиняется закону Ламберта и называется светлостью; её единицей является ламберт, соответствующий полному потоку в 1 лм (люмен) с 1 м².

В телевидении править

Яркость (B) оценивается по максимальному значению яркости светлых участков реестра.[7]

Примеры править

  • Солнце в зените — 1,65⋅109 кд/м²[8]
  • Солнце у горизонта — 6⋅106 кд/м²[8]
  • освещённый солнцем туман — более 12 000 кд/м²[9]
  • небо, затянутое светлыми облаками — 10 000 кд/м²[10]
  • диск полной Луны — 2500 кд/м²
  • дневное ясное небо — 1500—4000 кд/м²[8]
  • небо в стратосфере на высоте 19 км — 75 кд/м²[11]
  • серебристые облака — иногда до 1—3 кд/м²[12]
  • полярные сияния — до 0,2 кд/м²[12]
  • ночное небо в полнолуние — 0,0054 кд/м²[13]
  • ночное безлунное небо — 0,01[8]—0,0001 кд/м²[10]; 0,000171 кд/м²[14]

См. также править

Примечания править

  1. Под источником света может пониматься как излучающая, так и отражающая или рассеивающая свет поверхность. Также это может быть трёхмерный объект.
  2. В случае, когда источник не представляет собой светящуюся поверхность, речь идёт о проекции трёхмерного тела или области пространства, которая считается источником.
  3. Апостильб Архивная копия от 16 сентября 2009 на Wayback Machine в Большой советской энциклопедии
  4. Ландсберг Г.С. Элементарный учебник физики. Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. - М.: Наука, 1985. - 656 c. Дата обращения: 13 января 2023. Архивировано 13 января 2023 года.
  5. В случае усиливающей среды эта теорема прямо не выполняется или по крайней мере нуждается в аккуратном уточнении понимания её формулировки, формулировка же несколько затруднена тем, что в физическом смысле источником является не только первичный источник, но и среда. Так или иначе, если понимать под яркостью источника лишь яркость первичного источника, она совершенно очевидно может быть превзойдена при распространении света в активной среде.
  6. Петровський М. В. Електроосвітлення : конспект лекцій для студентів спеціальності 7.050701 «Електротехнічні системи електроспоживання» всіх форм навчання. — Суми : СумДУ, 2012. — 227 с.
  7. Р. М. Степанов. Телевизионные фотоэлектронные приборы. — СПбГЭТУ "ЛЭТИ", 2014. — С. 13. — 191 с.
  8. 1 2 3 4 Таблицы физических величин / под ред. акад. И. К. Кикоина. — М.: Атомиздат, 1975. — С. 647.
  9. Руководство по определению дальности видимости на ВПП. Дата обращения: 24 марта 2017. Архивировано из оригинала 25 февраля 2017 года.
  10. 1 2 Енохович А. С. Справочник по физике.—2-е изд. / под ред. акад. И. К. Кикоина. — М.: Просвещение, 1990. — С. 213. — 384 с.
  11. Труды всесоюзной конференции по изучению стратосферы. Л.-М., 1935. — С. 174, 255.
  12. 1 2 Ишанин Г. Г., Панков Э. Д., Андреев А. Л. Источники и приемники излучения. — СПб.: Политехника, 1991. — 240 с. — ISBN 5-7325-0164-9.
  13. Tousey R., Koomen M.J. The Visibility of Stars and Planets During Twilight // Journal of the Optical Society of America, Vol. 43, N 3, 1953, pp 177—183
  14. Andrew Crumey Human Contrast Threshold and Astronomical Visibility. Дата обращения: 20 февраля 2017. Архивировано 20 февраля 2017 года.

Ссылки править

  • Цветовые пространства. Авторская научная библиотека УГТУ Архивная копия от 8 мая 2012 на Wayback Machine