АТС-теорема

(перенаправлено с «АТС теорема»)

АТС теорема — теорема об аппроксимации тригонометрической суммы более короткой.

В некоторых областях математики и математической физики исследуются суммы вида

Здесь и  — вещественные функции вещественного аргумента,

Такие суммы появляются, например, в теории чисел при анализе дзета-функции Римана, при решении задач, связанных с распределением целых точек в различных областях на плоскости и в пространстве, при изучении рядов Фурье, при решении таких дифференциальных уравнений, как волновое уравнение, уравнение теплопроводности и т. д.

Вводные замечания править

Назовём длиной суммы   число   (для целых   и   это просто число слагаемых в  ).

Будем использовать следующие обозначения:

  • При   или   запись   означает, что существуют константы   и  , такие что
     
  • Для вещественного   запись   значит, что
     
    где   — дробная часть  

Сформулируем основную теорему о замене тригонометрической (иногда её называют также экспоненциальной) суммы более короткой.

Теорема об аппроксимации тригонометрической суммы править

Пусть вещественные функции   и   удовлетворяют на отрезке   следующим условиям:

  1.   и   являются непрерывными;
  2. существуют числа  ,   и   такие, что
     
     

Тогда, определяя числа   из уравнения

 

имеем

 

где

 
 
 
 
 

Лемма Ван дер Корпута править

Самым простым вариантом сформулированной теоремы - является утверждение, называемое в литературе леммой Ван дер Корпута.

Пусть   — вещественная дифференцируемая функция на интервале  , кроме того, внутри этого интервала её производная   является монотонной и знакопостоянной функцией, и при  ,   удовлетворяет неравенству

 

Тогда,

 

где  

Если параметры   и   являются целыми числами, то последнее выражение можно заменить таким:

 

где  .

Применение править

О применениях аппроксимации тригонометрической суммы в задачах физики см.[1],[2], см. также[3],[4].

История править

Проблема приближения тригонометрического ряда какой-либо подходящей функцией рассматривалась ещё Эйлером и Пуассоном.

При определённых условиях на   и   сумму   можно заменить с хорошей точностью другой суммой  

 

длина которой   много меньше, чем   Первые соотношения вида

 

где   — остаточный член, с конкретными функциями   и   были получены Г. Харди, Дж. Литтлвудом[5][6][7] и И. Виноградовым[8] при выводе функционального уравнения для дзета-функции Римана  , при рассмотрении количеств целых точек в областях на плоскости. В общем виде теорема была доказана Дж. Ван дер Корпутом[9][10] (о недавних результатах, связанных с теоремой Ван дер Корпута можно прочитать в[11]).

В каждой из вышеупомянутых работ на функции   и   накладывались некоторые ограничения. С ограничениями, удобными для приложений, теорема была доказана А. А. Карацубой в[12] (см. также[13][14]).

Примечания править

  1. E. A. Karatsuba Approximation of sums of oscillating summands in certain physical problems, — JMP 45:11, pp. 4310—4321 (2004).
  2. E. A. Karatsuba On an approach to the study of the Jaynes-Cummings sum in quantum optics, — Numerical Algorithms, Vol. 45, No.1-4 , pp. 127—137 (2007).
  3. E. Chassande-Mottin, A. Pai Best chirplet chain: near-optimal detection of gravitational wave chirps, — Phys. Rev. D 73:4, 042003, pp. 1—23 (2006).
  4. M. Fleischhauer, W. P. Schleich Revivals made simple: Poisson summation formula as a key to the revivals in the Jaynes-Cummings model, — Phys. Rev. A 47:3, pp. 4258—4269 (1993).
  5. G. H. Hardy and J. E. Littlewood The trigonometrical series associated with the elliptic θ-functions, — Acta Math. 37, pp. 193—239 (1914).
  6. G. H. Hardy and J. E. Littlewood Contributions to the theory of Riemann Zeta-Function and the theory of the distribution of primes, — Acta Math. 41, pp. 119—196 (1918).
  7. G. H. Hardy and J. E. Littlewood The zeros of Riemann’s zeta-function on the critical line, — Math. Z., 10, pp. 283—317 (1921).
  8. И. М. Виноградов О среднем значении числа классов чисто коренных форм отрицательного определителя, — Сообщ. Харьк. Матем. О-ва, т. 16, № 1/2 , с.10—38 (1918).
  9. J. G. Van der Corput Zahlentheoretische Abschätzungen, — Math. Ann. 84, pp. 53—79 (1921).
  10. J. G. Van der Corput Verschärfung der abschätzung beim teilerproblem, — Math. Ann., 87, pp. 39—65 (1922).
  11. H. L. Montgomery Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, — Am. Math. Soc., 1994.
  12. A. A. Karatsuba Approximation of exponential sums by shorter ones, — Proc. Indian. Acad. Sci. (Math. Sci.) 97: 1—3, pp. 167—178 (1987).
  13. С. М. Воронин, А. А. Карацуба Дзета-функция Римана, — М.: Физматлит, 1994.
  14. А. А. Карацуба, М. А. Королёв Теорема о приближении тригонометрической суммы более короткой, — Известия РАН. Серия математики, т. 71, № 2, с. 123—150 (2007).