Абелева категория — категория, в которой морфизмы можно складывать, а ядра и коядра существуют и обладают определёнными удобными свойствами. Пример, который стал прототипом абелевой категории — категория абелевых групп. Теория абелевых категорий была разработана Александром Гротендиком для объединения нескольких теорий когомологий. Класс абелевых категорий замкнут относительно нескольких категорных конструкций; например, категория цепных комплексов с элементами из абелевой категории и категория функторов из малой категории в абелеву также являются абелевыми.

Определение править

Предаддитивная категория является абелевой, если:

Это определение эквивалентно[1] следующему определению «по частям»: предаддитивная категория абелева, если она аддитивна, в ней существуют все ядра и коядра и все мономорфизмы и эпиморфизмы нормальны.

Важно, что наличие структуры абелевых групп на множествах морфизмов является следствием четырёх свойств из первого определения. Это подчёркивает фундаментальную роль категории абелевых групп в данной теории.

Примеры править

Аксиомы Гротендика править

В статье Sur quelques points d’algèbre homologique[2] Гротендик предложил несколько дополнительных аксиом, которые могут выполняться в абелевой категории  .

  • AB3) Для любого множества объектов   категории   существует копроизведение  . Данная аксиома эквивалентна кополноте абелевой категории  [3].
  • AB4)   удовлетворяет аксиоме AB3) и копроизведение любого семейства мономорфизмов является мономорфизмом (то есть копроизведение является точным функтором).
  • AB5)   удовлетворяет аксиоме AB3) и фильтрованные копределы[en] точных последовательностей точны. Эквивалентно, для любой решётки   подобъектов объекта   и любого   — подобъекта объекта   верно, что  

Аксиомы AB3*), AB4*) и AB5*) получаются из приведённых выше аксиом как двойственные им (то есть заменой копределов на пределы). Аксиомы AB1) и AB2) - стандартные аксиомы, которые выполняются в любой абелевой категории (более точно, абелева категория определяется как аддитивная категория, удовлетворяющая этим аксиомам):

  • AB1) У любого морфизма существует ядро и коядро.
  • AB2) Для любого морфизма   канонический морфизм из   в   является изоморфизмом. (Здесь  ).

Гротендик также формулирует более сильные аксиомы AB6) и AB6*), однако не использует их в этой работе.

История править

Понятие абелевой категории было предложено Буксбаумом[en] в 1955 году (он использовал название «точная категория») и Гротендиком в 1957 году. В то время существовала теория когомологий пучков на алгебраических многообразиях и теория когомологий групп. Эти теории определялись различно, но имели сходные свойства. Гротендику удалось объединить эти теории; обе они могут быть определены при помощи производных функторов на абелевой категории пучков и абелевой категории модулей соответственно.

Примечания править

Литература править

  • D. A. Buchsbaum. Exact categories and duality // Transactions of the American Mathematical Society. — 1955. — Т. 80, № 1. — С. 1–34. — ISSN 0002-9947. — doi:10.1090/S0002-9947-1955-0074407-6. — JSTOR 1993003.
  • Peter Freyd. Abelian Categories. — N. Y.: Harper and Row, 1964.
  • A. Grothendieck. Sur quelques points d’algèbre homologique // The Tohoku Mathematical Journal. Second Series. — 1957. — Т. 9. — С. 119–221. — ISSN 0040-8735.
  • Charles A. Weibel. An Introduction to Homological Algebra. — Cambridge University Press, 1994.