Амплиту́дная модуля́ция (АМ) — вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда.

Амплитудная модуляция имеет ряд разновидностей[⇨].

История править

 
Сигнал, например аудиосигнал, может модулировать амплитуду (АМ) или частоту (ЧМ) несущего сигнала

В 1900 году американский инженер Реджинальд Фессенден приступил к экспериментам по передаче звуковых сигналов посредством радиоволн. Он впервые включил угольный микрофон в цепь, соединяющую искровой генератор электромагнитных колебаний с антенной. Метод получил название «амплитудная модуляция» (АМ). Качество принятого звукового сигнала было плохим, поэтому дальнейшие работы Фессендена были направлены на усовершенствование и генератора, и приёмника[1][2]. В 1906 году он уже использовал несущий сигнал (переменный ток с частотой 50 кГц[2]), вырабатываемый электромашинным генератором[3]. Также был усовершенствован угольный микрофон для пропускания тока до нескольких ампер[2]. Проводимые в начале XX века первые опыты по передаче звуковых сигналов для широкой аудитории связаны с именами как Фессендена, так и Ли де Фореста[4].

Этот вид модуляции с 1920 года (сначала в США, с 1922—1923 годов в Великобритании, Франции и Германии, с 1924 года в СССР[4]) стал основным в звуковом радиовещании в диапазонах длинных, средних и коротких волн и до 1940-х годов применялся также и во всех других видах радиосвязи[3]. С 1920 года электромашинные генераторы заменялись генераторами на электронных лампах. К середине 1930-х годов значительное увеличение числа станций АМ-вещания привело к росту взаимных помех[4], кроме того, приём часто сопровождался треском при разрядах молний, а с развитием электротехники появились и другие помехи, как промышленные, так и бытовые. Исследования занимавшегося этой проблемой американского инженера Эдвина Армстронга привели к созданию системы радиовещания с частотной модуляцией (ЧМ), для которой в США поначалу была выделена полоса частот 42—50 МГц[5].

С середины XX века в служебной и любительской радиосвязи из-за «тесноты в эфире» на всех частотах начали применять разновидность амплитудной модуляции — модуляцию с одной боковой полосой (ОБП), одно из преимуществ которой — сужение в 2 раза занимаемой сигналом полосы частот. Однако модернизация сетей АМ-вещания путём их перевода на ОБП была практически невозможна — это требовало замены огромного парка вещательных приёмников. Для преодоления препятствия проводились исследования и эксперименты по созданию «совместимой ОБП». Такой вид модуляции (с дополнительной фазовой модуляцией АМ-сигнала) был предложен 1950-х годах учёными СССР и США, однако практического применения он не нашёл. В 1980-х годах Международный союз электросвязи предложил поэтапное, до 2015 года, внедрение ОБП, но к концу XX века появилась перспектива замены аналоговых систем передачи в радиовещании на цифровые[3].

В начале 2000-х годов был разработан комплект цифровых технологий Digital Radio Mondiale (DRM) на основе модуляции OFDM (в диапазонах длинных, средних и коротких волн). DRM позволяет прослушивать радиопередачи без шумов и помех, характерных для АМ, с близким к ЧМ-вещанию качеством, однако массового перехода на цифровые технологии не произошло. Это связано с большими расходами на замену огромного парка радиоприёмного и радиопередающего оборудования, а также с некоторыми недостатками DRM, например с неприятными для радиослушателя резкими обрывами радиоприёма при характерных для коротких волн глубоких замираниях радиосигнала.

Определение править

 
Амплитудная модуляция с различным коэффициентом модуляции. На нижней диаграмме — перемодуляция

Пусть

  •   — информационный (модулирующий) сигнал,
  •   — несущий (модулируемый) сигнал (несущее колебание).

Тогда АМ-сигнал   имеет вид:

 

Если  , то (1) примет вид[6]:

 

Здесь   — некоторая неотрицательная константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал  , модулированный по амплитуде сигналом   с коэффициентом модуляции  .

Для неискаженной модуляции необходимо выполнение условия  . Выполнение этого условия необходимо для того, чтобы выражение в квадратных скобках в (1) всегда было положительным. Если оно может принимать отрицательные значения в какой-то момент времени, то происходит так называемая перемодуляция (избыточная модуляция).

Спектральное представление править

 
Слева: модулирующий сигнал как функция времени. Справа: спектр АМ-сигнала
 
Спектр АМ-колебания

Допустим, что мы хотим модулировать несущее колебание синусоидальным сигналом. Выражение для несущего колебания с частотой   имеет вид (начальную фазу положим равной нулю):

 

где   — амплитуда несущего колебания.

Выражение для синусоидального модулирующего сигнала с частотой   имеет вид:

 

где   — начальная фаза,   . Тогда, в соответствии с (1):

 

Приведённая выше формула для   может быть записана в следующем виде:

 
 

Спектр АМ-колебания в случае широкополосного модулирующего сигнала состоит из несущего колебания и двух так называемых боковых полос, имеющих частоту, отличную от  . Для рассмотренного выше синусоидального модулирующего сигнала боковые полосы представляют собой синусоидальные сигналы и их частоты равны   и  .

Соседние по частоте радиостанции не будут создавать взаимных помех, если их несущие сигналы разнесены по частотному спектру так, что боковые полосы разных АМ-сигналов не перекрываются между собой.

Векторное представление править

 
Векторное суммирование спектральных составляющих АМ-сигнала
 
Векторное представление АМ-сигнала и соответствующая ему диаграмма во времени

В векторном представлении спектральные составляющие модулированного сигнала представляются в виде комплексных амплитуд. При таком представлении синусоидальный несущий сигнал интерпретируется как вектор с длиной, равной его амплитуде, вращающийся против часовой стрелки с частотой несущего сигнала   При амплитудной модуляции синусоидальным сигналом вектор результирующего модулированного сигнала представляется как векторная сумма вектора несущего сигнала   и векторов комплексных амплитуд двух боковых спектральных составляющих   и  

 

В системе координат, связанной с вектором несущего сигнала   векторы комплексных амплитуд боковых спектральных составляющих (векторы боковых полос) вращаются относительно неподвижного вектора несущего сигнала с частотой   так как частоты этих составляющих отличаются от несущей частоты на   — модулирующую частоту, причём вектор нижней боковой полосы вращается по часовой стрелке, а вектор верхней — против часовой стрелки. При этом компоненты векторов боковых полос, перпендикулярные вектору несущего сигнала, всегда равны по модулю и направлены в противоположные стороны (компоненты, направленные по оси х на рисунке), поэтому фаза модулированного сигнала всегда совпадает с фазой несущей, как показано на рисунке справа. При модуляции с подавленной несущей в спектре модулированного сигнала отсутствует вектор   при однополосной модуляции отсутствует один из векторов боковых полос.

Разновидности править

Разновидности амплитудной модуляции и сокращённые названия по некоторым классификациям:

  • однополосная модуляция[7] (ОБП[3], ОМ[8]):
  • однополосная с частично подавленной боковой полосой[7];
  • балансная модуляция[7] (БМ), или двухполосная модуляция с подавленным несущим сигналом (ДМ[8]).

Применение править

В 1939 году в СССР был изобретён метод, названный полярной модуляцией, — его суть состояла в том, что положительная полуволна так называемого поднесущего сигнала модулировалась по амплитуде одним сообщением, а отрицательная — другим. В СССР этот метод (с частично подавленным поднесущим сигналом частотой 31,25 кГц) был принят для системы стереофонического ЧМ-вещания[3]. Подобный метод, но с подавленным поднесущим сигналом частотой 38 кГц, применён в широко распространённой системе с пилот-тоном[4].

Амплитудная модуляция (с её разновидностями) получила распространение в аналоговых системах телевизионного вещания (передаётся однополосный сигнал изображения с частично подавленной боковой полосой[9]), в проводных и беспроводных системах дальней многоканальной связи[3] с частотным разделением каналов, а также в трёхпрограммном проводном вещании. АМ-радиосвязь используется в авиационных средствах связи гражданской авиации в диапазонах коротких, метровых и дециметровых волн[10], а также в общедоступном так называемом «гражданском диапазоне» (27 МГц).

Широкое применение АМ-радиосвязи в авиации объясняется сравнительной простотой построения передатчиков и приёмников АМ-сигнала и относительно невысокими требованиями к стабильности частоты радиоканалов[10]. Например, для однополосной модуляции при приёме речевых сообщений с хорошим качеством требования к точности восстановления частоты несущего сигнала достаточно высокие — наибольшая неточность при приёме на фоне шума составляет порядка 100 Гц. Однако при радиосвязи с быстро перемещающимися объектами требования к стабильности частоты передатчика и приёмника повышаются, так как на допустимую суммарную нестабильность частоты заметное влияние оказывает эффект Доплера[11], причём чем выше частота несущего сигнала, тем больше влияние. Поэтому из-за значительной нестабильности частоты радиоканалов применение однополосной модуляции в диапазоне метровых и дециметровых волн нецелесообразно — наиболее полно её преимущества реализованы в диапазоне коротких волн[12].

При двухполосной модуляции с подавленным несущим сигналом вся мощность передатчика расходуется на излучение боковых полос (в АМ-сигнале около двух третей мощности содержится в несущем сигнале[7]), что обеспечивает её высокую помехоустойчивость, но требования к стабильности частоты радиоканала остаются намного выше, чем, например, для амплитудной модуляции при несинхронном приёме[13].

В большинстве существующих радиоприёмных устройств для детектирования АМ-сигнала используется детектор огибающей, что приводит к двукратному проигрышу в помехоустойчивости по сравнению с приёмником с синхронным детектором, но упрощает схему приёмника[14].

Амплитудная модуляция (с её разновидностями) используется в измерительной технике, в биомедицинской аппаратуре (в том числе для физиотерапии[15]), в системах передачи телеметрической информации и в других областях техники[16]. Например, при измерении медленно меняющегося сигнала с малым уровнем проблема дрейфа требуемого усилителя постоянного тока решается преобразованием исходного сигнала в сигнал на частоте вспомогательных колебаний с амплитудой, пропорциональной амплитуде исходного сигнала. Затем преобразованный сигнал поступает через не пропускающий постоянный ток элемент (конденсатор, трансформатор) на вход усилителя переменного тока. После усиления и последующего преобразования каким-либо амплитудным детектором (часто применяется синхронный детектор) получается усиленный сигнал, повторяющий форму исходного сигнала[17].

См. также править

Примечания править

  1. Меркулов В. Когда радио «заговорило». Архивная копия от 14 июня 2021 на Wayback Machine // Радио, 2007. — № 10. — С. 6—9.
  2. 1 2 3 Самохин В. П. Памяти Реджинальда Фессендена (с приложением «Александерсон Эрнест»). Архивная копия от 9 ноября 2020 на Wayback Machine // Наука и образование, научное издание МГУ им. Баумана, 8 августа 2012 года. — С. 2, 8, 11.
  3. 1 2 3 4 5 6 Развитие методов модуляции и кодирования. Архивная копия от 12 октября 2017 на Wayback Machine Быховский, 2001.
  4. 1 2 3 4 Вещание. Архивная копия от 24 октября 2017 на Wayback Machine Быховский, 2001.
  5. Самохин В. П., Киндяков Б. М. Памяти Эдвина Армстронга (18.12.1890—31.01.1954) // Наука и образование. — 2014. Дата обращения: 23 октября 2017. Архивировано из оригинала 7 апреля 2014 года.
  6. Андреевская Т. М. Основы радиоэлектроники и связи. Амплитудно-модулированные радиосигналы. — МГИЭМ, 2004. Дата обращения: 14 апреля 2016. Архивировано 13 апреля 2016 года.
  7. 1 2 3 4 Першин В. Т. 4. Амплитудно-модулированные (АМ) сигналы // Основы радиоэлектроники и схемотехники: Учебное пособие. В 2-х частях. Часть 1 : [арх. 17 июля 2023]. — Минск : БГУИР, 2005. — 170 с. — ISBN 985-444-877-0 (ч. 1).
  8. 1 2 Силяков, 2004, с. 29.
  9. Кулешов, 2008, с. 16.
  10. 1 2 Силяков, 2004, с. 82.
  11. Силяков, 2004, с. 80.
  12. Силяков, 2004, с. 83.
  13. Силяков, 2004, с. 81.
  14. Силяков, 2004, с. 76.
  15. Кулешов, 2008, с. 17.
  16. Кулешов, 2008, с. 102.
  17. Постоянного тока усилитель // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.

Литература править

  • Амплитудная модуляция : [арх. 3 января 2023] // А — Анкетирование. — М. : Большая российская энциклопедия, 2005. — С. 628. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 1). — ISBN 5-85270-329-X.
  • Быховский М. А. Круги памяти (Очерки истории развития радиосвязи и вещания в XX столетии). — М.: МЦНТИ – Международный центр научной и технической информации, 2001. — 223 с. — (История электросвязи и радиотехники). — ISBN 5-93533-011-3.
  • Кулешов В. Н., Удалов Н. Н., Богачёв В. М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.
  • Силяков В. А., Красюк В. Н. Системы авиационной радиосвязи: Учебное пособие / Под ред. В. А. Силякова. — СПб.: СПбГУАП, 2004. — 160 с. — ISBN 5-8088-0136-2.

Ссылки править