Открыть главное меню

Антиферромагнетики

Антиферромагнетик — магнитные моменты вещества направлены противоположно и равны по силе.

Антиферромагнетик — вещество, в котором установился антиферромагнитный порядок магнитных моментов атомов или ионов. В антиферромагнетиках спиновые магнитные моменты электронов самопроизвольно ориентированы антипараллельно друг другу. Такая ориентация охватывает попарно соседние атомы. В результате антиферромагнетики обладают очень малой магнитной восприимчивостью и ведут себя как слабые парамагнетики.

Свойства антиферромагнетиковПравить

Обычно вещество становится антиферромагнетиком ниже определённой температуры  , так называемой точки Нееля и остаётся антиферромагнетиком вплоть до  .

Антиферромагнетики среди элементовПравить

Среди элементов антиферромагнетиками являются твёрдый кислород (a-модификация при  ), хром ( ), а также ряд редкоземельных металлов. В последних обычно наблюдаются сложные антиферромагнитные структуры в температурной области между   и ( ). При более низких температурах они становятся ферромагнетиками. Данные о наиболее известных антиферромагнетиках — редкоземельных элементах — приведены в таблице ниже.

Данные о наиболее известных антиферромагнетиках

Элемент T1, K TN, K
Dy 85 179
Ho 20 133
Er 20 85
Tm 22 60
Tb 219 230

Антиферромагнетики среди химических соединенийПравить

Число известных химических соединений, которые становятся антиферромагнетиками при определённых температурах, приближается к тысяче. Ряд наиболее простых антиферромагнетиков и их температуры   приведены в таблице ниже. Большая часть антиферромагнетиков обладает значениями  , лежащими существенно ниже комнатной температуры. Для всех гидратированных солей   не превышает  , например   у  .

Ряд наиболее простых антиферромагнетиков
Соединение TN, K
MnSO4 12
FeSO4 21
CoSO4 12
NiSO4 37
MnCO3 32,5
FeCO3 35
CoCO3 38
NiCO3 25
Соединение TN, K
MnO 120
FeO 190
CoO 290
NiO 650
MnF2 72
FeF2 79
CoF2 37,7
NiF2 73,2

ПрименениеПравить

  • С использованием атомов антиферромагнетика при низких температурах возможно создание ячеек памяти, содержащих всего 12 атомов (для сравнения, в современных жестких дисках для хранения 1 бита информации необходимо около 1 млн. атомов) [1][2].

ПримечанияПравить

ЛитератураПравить

  • Тябликов С. В. Методы квантовой теории магнетизма. — 2-е изд. — М., 1975.
  • Савельев И. В. Т. 2: Электричество. Колебания и волны. Волновая оптика. — М.: Наука.