Аргумент Экманна — Хилтона

(перенаправлено с «Аргумент Экманна-Хилтона»)

Аргумент Экманна — Хилтона — теорема о паре унитальных магм, одна из которых является гомоморфизмом для другой. В таком случае простое рассуждение показывает, что структуры магм совпадают и, более того, они является коммутативным моноидом. Назван в честь Экманна и Хилтона, использовавших его в своей статье 1962 года.

Наиболее известное приложение этой теоремы — доказательство того факта, что гомотопические группы любой топологической группы абелевы. Например, для доказательства коммутативности достаточно рассмотреть произведение петель, индуцированное групповым умножением в и воспользоваться аргументом Экманна — Хилтона.

Формулировка и доказательство теоремы

править

Пусть   и   — две магмы с единицами   и  , причём

  для всех  .

Тогда бинарные операции   и   совпадают и, более того, являются коммутативными и ассоциативными.

Заметим, что единицы рассматриваемых магм совпадают:  .

Далее, пусть  . Тогда  . Таким образом,   и   совпадают и являются коммутативными.

Наконец, проверим ассоциативность:  .

Литература

править
  • John Baez: Eckmann-Hilton principle (week 89)
  • John Baez: Eckmann-Hilton principle (week 100)
  • Eckmann, B.; Hilton, P. J. (1962), "Group-like structures in general categories. I. Multiplications and comultiplications", Mathematische Annalen, 145 (3): 227—255, doi:10.1007/bf01451367, MR 0136642.
  • Hurewicz, W. (1935), Beitrage zur Topologie der Deformationen, Nederl. Akad. Wetensch. Proc. Ser. A, vol. 38, pp. 112—119, 521–528.
  • Brown, R.; Higgins, P. J.; Sivera, R. (2011), Nonabelian algebraic topology: filtered spaces, crossed complexes, cubical homotopy groupoids, European Mathematical Society Tracts in Mathematics, vol. 15, p. 703, arXiv:math/0407275, MR 2841564.
  • Higgins, P. J. (2005), "Thin elements and commutative shells in cubical  -categories", Theory and Application of Categories, 14: 60—74, MR 2122826.
  • James, I.M. (1999), History of Topology, North Holland
  • Murray Bremner and Sara Madariaga. (2014) Permutation of elements in double semigroups