Бездымный порох

(перенаправлено с «Белый порох»)

Безды́мный по́рох (англ. Smokeless powder) или нитропорох (англ. nitro powder) — групповое название метательных взрывчатых веществ на основе нитрата целлюлозы, используемых в огнестрельном оружии и артиллерии, в твердотопливных ракетных двигателях, которые при сгорании не образуют твёрдых частиц (дыма), а только газообразные продукты сгорания, в отличие от дымного (чёрного) пороха.

Бездымный порох

Типы бездымного пороха включают кордит, баллистит и, традиционно, белый порох (англ. Poudre B). Они классифицируются на одноосновный, двухосновный и трёхосновный.

Описание править

Бездымный порох состоит из нитроцеллюлозы (одноосновный), обычно с добавлением до пятидесяти процентов нитроглицерина (двухосновный), и иногда нитроглицерина в сочетании с нитрогуанидином (трёхосновный). Конечный продукт гранулируется в сферические частицы или прессуется в цилиндры или хлопья при помощи растворителей типа эфира. Также дополнительной составляющей бездымного пороха могут быть стабилизаторы и баллистические модификаторы.

Двухосновные порохи обычно используются в изготовлении патронов для стрелкового и охотничьего оружия, в то время как трёхосновные более широко применяются в артиллерии и двигателях ракет небольшого калибра.

Причина бездымности этих порохов состоит в том, что продукты окисления их ингредиентов в основном газообразны, по сравнению с чёрным порохом, выделяющим при сгорании до 55 % твердых веществ (карбонат калия, сульфат калия и пр.).

Бездымный порох горит только по поверхности гранул, хлопьев или цилиндров — для краткости, гранул. Бóльшие гранулы сгорают медленнее и скорость их сгорания также контролируется специальным покрытием, мешающим горению, основная функция которого — регулировать более-менее постоянное давление на вращающуюся пулю или снаряд, ещё не покинувшие ствол орудия, что позволяет им достигать максимальной скорости.

Самые большие гранулы в пушечном порохе. Они представляют собой цилиндр, достигающий размера пальца руки, в котором проделаны семь отверстий (одно по оси симметрии, а остальные шесть — расположены по кругу центрального поперечного сечения). Эти отверстия стабилизируют процесс горения благодаря тому, что пока внешняя поверхность, сгорая, уменьшает внешнюю площадь горения, сгорает и внутренняя поверхность, увеличивая внутреннюю площадь горения. Изнутри горение в грануле происходит быстрее, таким образом позволяя поддерживать давление в стволе постоянным, при увеличении в нём свободного пространства из-за движения пули/снаряда вперёд.

Быстрогорящие пистолетные пороха делаются таким образом, чтобы поверхность их гранул была максимальной, как у хлопьев или плоских дисков.

Сушат порох в основном в вакууме. При сушке растворители конденсируются и могут быть снова использованы в процессе изготовления. Гранулы также покрываются графитом с целью избежать их возгорания от искр статического электричества.

История править

 
До внедрения бездымного пороха, первый же залп окутывал огневую позицию густым непроглядным дымом, делая дальнейшую стрельбу пальбой наугад

Пироксилин править

Со времен Наполеона командующие войсками часто жаловались на невозможность отдавать приказы в бою из-за сильного задымления, вызванного порохом, использовавшимся в ружьях.

Большой прорыв вперёд был сделан с изобретением пироксилина — материала, основанного на нитроцеллюлозе. Он нашёл широкое применение в артиллерии.

Однако пироксилин имел ряд существенных недостатков. Пироксилин был более мощным, чем дымный порох, но в то же время менее стабильным, что делало его неподходящим для использования с огнестрельным оружием малых размеров — не только из-за большей опасности в полевых условиях, но и из-за повышенного износа оружия. Оружие, которое могло выстрелить тысячи раз обычным порохом, приходило в негодность после нескольких сотен выстрелов с более мощным пироксилином. Также происходило множество взрывов на фабриках по производству пироксилина из-за небрежного отношения к его нестабильности и средствам стабилизации.

По этим причинам применение пироксилина было приостановлено на двадцать с лишним лет, до тех пор пока люди не научились его «приручать». Лишь в 1880 году пироксилин стал жизнеспособным взрывчатым веществом.

Белый порох править

В 1884 году Поль Вьель (Paul Vieille) изобрёл бездымный порох, названный Poudre B, который был основан на желатинизированной нитроклетчатке (68% нерастворимой в диэтиловом эфире тринитроцеллюлозы смешана с 30% растворённой в эфире динитроцеллюлозы с добавкой 2% парафина), с дальнейшим образованием пороховых элементов и последующей сушкой зёрен пороха.

Конечное взрывчатое вещество, которое в наши дни называют нитроцеллюлозой, содержит несколько меньшее количество азота, чем пироксилин, поэтому оно легче желатинизируется спирто-эфирной смесью. Большим достоинством данного пороха было то, что он, в отличие от пироксилина, горит послойно, что делало его баллистические свойства предсказуемыми.

Порох Вьеля произвёл революцию в мире стрелкового огнестрельного оружия по нескольким причинам:

  • Больше практически не было дыма, тогда как ранее после нескольких выстрелов с использованием чёрного пороха поле зрения солдата сильно сужалось из-за клубов дыма, что мог исправить только сильный ветер. Кроме того, позиция стрелка не выдавалась клубом дыма из винтовки.
  • Poudre B давал большую скорость вылета пули, что означало более прямую траекторию, что повышало точность и дальность стрельбы; дальность стрельбы достигла 1000 метров.
  • Так как Poudre B был в три раза мощнее чёрного пороха, то его требовалось намного меньше. Боеприпасы облегчались, что позволяло войскам носить с собой большее количество боеприпасов при той же их массе.
  • Патроны срабатывали, даже будучи мокрыми. Основанные же на чёрном порохе боеприпасы должны были храниться в сухом месте, поэтому их всегда переносили в закрытых упаковках, препятствовавших попаданию влаги.

Порох Вьеля был использован в винтовке Лебеля, которую сразу же приняла на вооружение французская армия, чтобы использовать все преимущества нового пороха над чёрным. Другие европейские страны поспешили последовать примеру французов и тоже перешли на аналоги Poudre B. Первыми были Германия и последовавшая за ней Австрия, которые ввели новое вооружение в 1888 году.

Баллистит и кордит править

Примерно в одно время с Вьелем в 1887 году в Великобритании Альфред Нобель разработал баллистит, один из первых нитроглицериновых бездымных порохов, состоящий из равных частей пороха и нитроглицерина, и получил на него британский патент.

Баллистит был модифицирован Фредериком Абелем и Джеймсом Дьюаром в новый состав, названный кордит. Он также состоит из нитроглицерина и пороха, но использует самую нитрированную разновидность пороха, нерастворимую в смесях эфира и спирта, в то время как Нобель использовал растворимые формы. Кордит стал основным видом бездымных взрывчатых веществ на вооружении британской армии в течение XX века.

Кордит стал предметом судебных исков между Нобелем и британским правительством в 1894 и 1895 гг. Нобель считал, что его патент на баллистит также включает и кордит, на практике невозможно приготовить одну из форм в чистом виде, без примеси второй. Суд вынес постановление не в пользу Нобеля.

В 1889 году британский патент на похожий состав также получил оружейник Хайрем Максим, а в 1890 году его брат Хадсон Максим запатентовал этот состав в США.

Эти новые взрывчатые вещества были более стабильными и более безопасными в обращении, чем белый порох, и, что немаловажно — более мощными.

Пироколлодийный порох править

23 января 1891 года Дмитрий Иванович Менделеев создал и дал название этому пороху «пироколлодийный» — по полученному и названному им же виду нитроклетчатки — «пироколлодий». Вид нитроцеллюлозного пороха, в состав которого входит хорошо растворимая нитроклетчатка и собственно растворитель, дополнительными компонентами являются различные присадки, предназначенные для стабилизации газообразования. Началось производство на Шлиссельбургском заводе под Санкт-Петербургом. Осенью 1892 года, с участием главного инспектора артиллерии морского флота адмирала С. О. Макарова, испытан пироколлодийный порох. За полтора года под руководством Д. И. Менделеева разработана технология пироколлодия — основы российского бездымного пороха. После испытаний 1893 адмирал С. О. Макаров подтвердил пригодность нового "бездымного зелья" для использования в орудиях всех калибров.[1]

В 1895—1896 годах «Морской сборник» печатает две большие статьи Д. И. Менделеева под общим заголовком «О пироколлодийном бездымном порохе», где особо рассматривается химизм технологии и приводится реакция получения пироколлодия. Характеризуется объём газов, выделяемых при его горении, последовательно и подробно рассматривается сырьё. Д. И. Менделеев, скрупулёзно сравнивая по 12 параметрам пироколлодийный — с другими порохами, демонстрирует его неоспоримые достоинства, прежде всего — стабильность состава, гомогенность, отсутствие «следов детонации».[2]

Желатиновый порох править

Иван Платонович Граве — профессор Михайловской артиллерийской академии, полковник, — в 1916 году усовершенствовал французское изобретение: получил бездымный порох на другой основе — на нелетучем растворителе, — коллоидный, или желатиновый, порох. Он легко поддавался формовке и даже обработке на токарном станке. Применялся желатиновый порох в виде пороховых элементов с большой толщиной стенки (более нескольких миллиметров).

В 1926 году в СССР Граве получил патент на это изобретение. Главное артиллерийское управление (ГАУ) подтверждает его авторство в разработке пороха и снарядов для «Катюши»[3].

Применение править

В наши дни пороха, основанные только на нитроцеллюлозе, известны как одноосновные, а кордитоподобные известны как двухосновные. Также были разработаны трёхосновные кордиты (Cordite N и NQ) с добавкой нитрогуанидина, изначально использовавшиеся в больших пушках морских боевых кораблей, но нашедшие своё применение и в танковых войсках, а ныне использующиеся и в полевой артиллерии. Основное преимущество трехосновных порохов, по сравнению с двухосновными, состоит в существенно более низкой температуре пороховых газов при аналогичной эффективности. Перспективы дальнейшего использования порохов, содержащих нитрогуанидин, связаны с авиационными и зенитными орудиями малого калибра, имеющими высокий темп стрельбы.

Бездымный порох позволил произвести на свет современное полуавтоматическое и автоматическое оружие. Чёрный порох оставлял большое количество твердых продуктов (40-50% от массы пороха) в стволах орудий. Основные твердые продукты сгорания дымного пороха, полисульфиды (K2Sn, где n=2-6) и сульфид калия (K2S), притягивают влагу и гидролизуются до калийной щелочи и сероводорода. При сгорании бездымных порохов образуется не более 0,1 - 0,5% твердых продуктов, что позволило осуществлять автоматическую перезарядку оружия с использованием множества подвижных частей. Стоит учесть, что продукты сгорания всех бездымных порохов содержат много оксидов азота, что повышает их корродирующее действие на металл оружия.

Одно- и двухосновные бездымные пороха в наше время составляют основную часть метательных взрывчатых веществ, использующихся в стрелковом оружии. Они настолько распространены, что большинство случаев использования слова «порох» относится именно к бездымному пороху, в частности, когда речь идёт о ручном огнестрельном оружии и артиллерии. Дымные пороха используются в качестве МВВ только в подствольных гранатометах, сигнальных ракетницах и некоторых патронах для гладкоствольного оружия.

В некоторых случаях, например, в ряде кустарных ручных гранат и импровизированных артиллерийских снарядов, бездымный порох может использоваться и в качестве бризантного взрывчатого вещества, для чего плотность заряжания доводят до величины, соответствующей детонации, и используют мощные детонаторы. В отличие от многих взрывчатых веществ, для использования бездымного пороха не обязателен капсюль-детонатор, вполне достаточно любого воспламенителя. Эффективность использования бездымных порохов в качестве БВВ, в случае воспламенения, сравнима с эффективностью использования минного дымного пороха. При использовании мощных детонаторов (на практике не менее 400-600 гр. ТНТ) эффективность находится на уровне большинства индивидуальных БВВ.

Нестабильность и стабилизация править

Нитроцеллюлоза со временем разлагается с выделением оксидов азота, которые катализируют дальнейший распад компонентов пороха. В процессе реакций разложения выделяется теплота, которой, в случае длительного хранения большого количества пороха или хранения пороха при высоких температурах (на практике, выше 25°С), может быть достаточно для самовоспламенения.

Одноосновные нитроцеллюлозные пороха наиболее подвержены разложению; двухосновные и трёхосновные разлагаются более медленно, что связано с более высоким содержанием стабилизаторов химической стойкости и их более равномерным распределением в объеме пороха, так как нитроглицерин и другие пластификаторы способствуют переводу нитроцеллюлозы в состояние однородного пластика. Кислотные продукты химического распада (главным образом, оксиды азота, азотистая и азотная кислоты) энергонасыщенных компонентов пороха могут вызвать коррозию металлов гильзы, пули и капсюля снаряженных боеприпасов или металлов упаковки пороха при отдельном хранении последнего.

Чтобы избежать накопления в составе пороха кислотных продуктов распада, добавляют стабилизаторы, самыми популярными из которых являются дифениламин и центролиты (№1 и №2). Также применяют 4-нитродифениламин, N-нитрозодифениламин и N-метил-п-нитроанилин. Стабилизаторы добавляются в количествах порядка 0,5-2 % от общей массы состава; большие же количества могут несколько ухудшить баллистические характеристики пороха за счет смещения кислородного баланса. Количество стабилизатора со временем уменьшается за счет расходования на реакции с кислотными продуктами разложения пороха, что может привести к самовозгоранию, поэтому взрывчатые вещества должны периодически тестироваться на количество стабилизаторов. Повышение содержания стабилизаторов химической стойкости способствует увеличению продолжительности хранения любых метательных ВВ, но снижает баллистические качества порохового заряда.

Бездымные взрывчатые компоненты править

В состав разных сортов пороха могут входить различные активные и вспомогательные компоненты:

Да)

Свойства пороха сильно зависят от размера и формы его гранул. Поверхность гранул влияет на изменение их формы и скорость сгорания. Варьируя форму гранул можно повлиять на давление и кривую процесса сгорания пороха по времени.

Составы, сгорающие быстрее, дают большее давление при более высокой температуре, но также увеличивают износ стволов орудий.

Порох Primex содержит 0—40 % нитроглицерина, 0—10 % дибутилфталата, 0—10 % polyester adipate, 0—5 % канифоли, 0—5 % этилацетата, 0,3—1,5 % дифениламина, 0—1,5 % N-нитрозодифениламина, 0—1,5 % 2-нитрофениламина, 0—1,5 % нитрата калия, 0—1,5 % сульфата калия, 0—1,5 % оксида олова, 0,02—1 % графита, 0—1 % карбоната кальция, и остаток от 100 % — нитроцеллюлозы. USA smokeless powder manufacturer’s Material Safety Data Sheet

См. также править

Примечания править

  1. Летопись жизни и деятельности Д. И. Менделеева. Л.: Наука. 1984. С. 313
  2. Менделеев Дмитрий Иванович. Менделеев, Д. И. Сочинения: в 25 т. / Ответственный редактор акад. В. Г. Хлопин; Кураторы тома: проф. С. П. Вуколов и засл. деят. науки Л. И. Багал. — Л.—М.. — Академия Наук СССР. — Ленинград—Москва: Академия Наук СССР, 1949. — С. 181-253. — 314 с.
  3. Один из создателей «Катюши» Архивная копия от 24 октября 2015 на Wayback Machine.

Ссылки править