Открыть главное меню

Вполне упорядоченное множество — линейно упорядоченное множество M такое, что в любом его непустом подмножестве есть минимальный элемент, другими словами, это фундированное множество с линейным порядком.

Содержание

ПримерыПравить

  • Пустое множество является вполне упорядоченным.
  • Простейший пример бесконечного вполне упорядоченного множества — множество натуральных чисел с естественным упорядочением.
  • Множество целых чисел не является вполне упорядоченным, так как, например, среди отрицательных чисел нет наименьшего. Однако его можно сделать вполне упорядоченным, если определить нестандартное отношение «меньше или равно»[1], которое обозначим   и определим следующим образом:
  если либо   либо   либо   и  
Тогда порядок целых чисел будет таким:   В частности,   будет наименьшим отрицательным числом.
  • Простейшим примером несчётного вполне упорядоченного множества является совокупность всех счётных порядковых чисел, упорядоченных отношением  . В предположении континуум-гипотезы, его мощность равна мощности континуума.

СвойстваПравить

  • Согласно теореме Цермело, если принять аксиому выбора, то любое множество можно вполне упорядочить. Более того, утверждение о существовании полного порядка для любого множества эквивалентно аксиоме выбора. В частности, при наличии аксиомы выбора, множество вещественных чисел можно вполне упорядочить.
  • Если X и Y — два вполне упорядоченных множества, то либо они изоморфны друг другу, либо ровно одно из них изоморфно начальному отрезку другого.

См. такжеПравить

ЛитератураПравить

ПримечанияПравить

  1. Дональд Кнут. Искусство программирования, том I. Основные алгоритмы. — М.: Мир, 1976. — С. 571 (15b). — 736 с.