Группа Тейта — Шафаревича

Группа Тейта — Шафаревича — математическое понятие, используемое в диофантовой, алгебраической геометрии и алгебраической теории чисел. Независимо введено в совместной работе С. Ленга, Дж. Тейта ("Principal homogeneous spaces over abelian varieties", American Journal of Mathematics, 1958) и И. Р. Шафаревича ("Группы главных однородных алгебраических многообразий", Доклады АН СССР, 1959).

Группа Тейта — Шафаревича Ш(A/K) — это абелево многообразие A над числовым полем K, состоящее из тех элементов группы Вейля — Шатле[en] WC(A/K) = H1(GK, A), которые являются тривиальными во всех расширениях поля K (то есть p-адических расширениях K, а также его вещественных и комплексных расширений). В терминах когомологий Галуа[en], это можно представить в виде

Обозначение Ш(A/K) введено Джоном Касселсом, кириллическая буква "Ш" используется в честь И. Р. Шафаревича.

СсылкиПравить