Открыть главное меню

Двигатель внутреннего сгорания

(перенаправлено с «Двс»)
Поршневой двигатель внутреннего сгорания

Дви́гатель вну́треннего сгора́ния (ДВС) — разновидность теплового двигателя, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя. Тем самым, топливная смесь и является рабочим телом таких двигателей. Такой двигатель является химическим, и преобразует энергию сгорания топлива в механическую работу[1].

Название "двигатель внутреннего сгорания" в основном закрепилось за поршневыми и комбинированными двигателями, чаще всего указывая именно на эти семейства моторов.

История созданияПравить

Тепловые машины (в основном, паровые) с момента появления отличались большими габаритами и массой, обусловленными применением внешнего сгорания (требовались котлы, конденсаторы, испарители, теплообменники, тендеры, насосы, водяные резервуары и др.), в то же время основная (функциональная) часть паровой машины (поршень и цилиндр) сравнительно невелика[2]. Поэтому мысль изобретателей всё время возвращалась к возможности совмещения топлива с рабочим телом двигателя, позволившего впоследствии значительно уменьшить габариты и вес, интенсифицировать процессы впуска и выпуска рабочего тела. Особенно важны эти отличия на транспорте.

В создание различных ДВС внесли наибольший вклад такие инженеры как Джон Барбер (изобретение газовой турбины в 1791), Роберт Стрит (патент на двигатель на жидком топливе, 1794 год), Филипп Лебон (открытие светильного газа в 1799, первый газовый двигатель в 1801), Франсуа Исаак де Риваз (первый поршневой двигатель, 1807), Жан Этьен Ленуар (газовый двигатель Ленуара, 1860), Николаус Отто (двигатель с искровым зажиганием и сжатием смеси в 1861 году, четырёхтактный двигатель в 1876-м), Рудольф Дизель (двигатель Дизеля на угольной пыли, 1897), Готлиб Даймлер и Вильгельм Майбах, Огнеслав Степанович Костович (бензиновый мотор с карбюратором, 1880-е), Густав Васильевич Тринклер (дизельные двигатели на жидком топливе, 1899), Вернер фон Браун (реактивные и турбореактивные двигатели, начиная с 1930-х и заканчивая Лунной программой), и другие. Таким образом, ДВС развивались с отставанием от паровых машин (так, паровой насос для откачки воды был изобретён Томасом Севери в 1698 году), обусловленным отсутствием подходящего горючего. Сама идея ДВС была предложена Христианом Гюйгенсом ещё в 1678 году, в качестве топлива нидерландский учёный предлагал использовать порох[3]. Англичанин Этьен Барбер пытался использовать для этого смесь воздуха с газом, полученным при нагреве древесины[4].

Появление целой плеяды разнообразных мощных и лёгких двигателей позволило создать новые, не существовавшие ранее виды транспорта (винтовые и реактивные самолёты, вертолёт, ракета, космический корабль), улучшить экономичность и экологичность корабельных силовых установок и локомотивов. Моторизация привела также к ускорению темпа жизни людей, возникновению целой автомобильной культуры (США); в военном деле дало возможность создать необычайно разрушительные машины смерти (танк, истребитель, бомбардировщик, ракеты с обычной и ядерной боеголовкой, подводные лодки и другие).

 
Газотурбинный ДВС

Классификация ДВСПравить

По устройству:Править

  • Поршневые двигатели — камерой сгорания служит цилиндр, возвратно-поступательное движение поршня с помощью кривошипно-шатунного механизма преобразуется во вращение вала.
  • Газотурбинные двигатели — преобразование энергии осуществляется ротором с клиновидными лопатками.
  • Роторно-поршневые двигатели — в них преобразование энергии осуществляется за счёт вращения рабочими газами ротора специального профиля.
  • Реактивные двигатели — развиваемая двигателем мощность сразу используется для поступательного движения ракеты или самолёта, дополнительное преобразование в крутящий момент и трансмиссия отсутствует (двигатель является движителем). Поэтому имеют наивысшие удельные мощностные показатели; являются единственными двигателями, способными выводить аппараты на орбиту.
 
Схема работы четырёхтактного рядного четырёхцилиндрового двигателя внутреннего сгорания

По другим критериям:Править

  • по назначению — на транспортные (автомобильные, судовые, самолётные), стационарные и специальные.
  • по роду применяемого топлива — бензиновые и газовые двигатели, работающие на тяжёлом топливе дизели.
  • по способу образования горючей смеси — внешнее (карбюраторные и инжекторные двигатели) и внутреннее (в цилиндре ДВС у дизелей и искровых с непосредственным впрыском).
  • по объёму рабочих полостей и весогабаритным характеристикам — лёгкие, средние, тяжёлые, специальные.
  • устройству систем охлаждения (воздушное, жидкостное), и другим[5].

Помимо приведённых выше общих для всех ДВС критериев классификации существуют критерии, по которым классифицируются отдельные типы двигателей. Так, поршневые двигатели можно классифицировать по количеству и расположению цилиндров, коленчатых и распределительных валов, по типу охлаждения, по наличию или отсутствию крейцкопфа, наддува (и по типу наддува), по способу смесеобразования и по типу зажигания, по количеству карбюраторов, по типу газораспределительного механизма, по направлению и частоте вращения коленчатого вала, по отношению диаметра цилиндра к ходу поршня, по степени быстроходности (средней скорости поршня)[1][6].

 
Роторный ДВС


Преимущества и недостатки ДВСПравить

По сравнению с двигателями внешнего сгорания ДВС:

  • не имеет дополнительных элементов теплопередачи — топливо само образует рабочее тело;
  • компактнее, так как не имеет целого ряда дополнительных агрегатов;
  • по этим причинам легче и дешевле (удельная мощность намного выше);
  • по причине быстрого рабочего процесса с высокой температурой сгорания, экономичнее;
  • потребляет топливо, обладающее весьма жёстко заданными параметрами (испаряемостью, температурой вспышки паров, плотностью, теплотой сгорания, октановым или цетановым числом), так как от этих свойств зависит сама работоспособность ДВС;
  • не имеет возможности работать по замкнутому циклу (двигатель Стирлинга), использование внешних источников теплоты и холода невозможно.
  • практически все виды топлива для ДВС — невозобновляемые ресурсы (газ и нефтепродукты). Исключения (этиловый спирт, биогаз, генераторный газ) используются редко, ввиду снижения характеристик транспортного средства (грузоподъёмность, мощность, скорость).

Поршневой ДВС с искровым зажиганием (Отто-мотор)Править

Является наиболее распространённым по количеству, поскольку число автомобилей в мире приближается к миллиарду, и большая их часть имеет Отто-моторы.

Бензиновый двигательПравить

Является наиболее распространённым вариантом, установлен на значительной части легковых автомобилей (ввиду меньшей массы, стоимости, хорошей экономичности и малошумности). Имеет два варианта подачи топлива: инжектор и карбюратор.

Карбюраторный двигательПравить

Основная статья: Карбюраторный двигатель

Особенностью является получение топливо-бензиновой смеси в специальном смесителе, карбюраторе. Ранее такие бензиновые двигатели преобладали; теперь, с развитием микропроцессоров, их область применения стремительно сокращается (применяются на маломощных ДВС, с низкими требованиями к расходу топлива).

Инжекторный двигательПравить

Особенностью является получение топливной смеси в коллекторе или цилиндрах двигателя путём подачи инжекторной системой подачи топлива. В настоящий момент является преобладающим вариантом бензинового ДВС, поскольку позволяет резко упростить электронное управление двигателем. Нужная степень однородности смеси достигатеся подачей топлива под давлением, вместо распыла потоком воздуха в карбюраторном двигателе.

Роторно-поршневойПравить

Предложен изобретателем Ванкелем в начале XX века. Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии (автомобиль RO-80), ВАЗом в СССР (ВАЗ-21018 «Жигули», ВАЗ-416, ВАЗ-426, ВАЗ-526), Маздой в Японии (Mazda RX-7, Mazda RX-8). При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки.

RCV — двигатель внутреннего сгорания, система газораспределения которого реализована за счёт движения поршня, который совершает возвратно-поступательные движения, попеременно проходя впускной и выпускной патрубок

Обычно роторно-поршневые ДВС используют в качестве топлива бензин, но возможно и применение газа. Роторно-поршневой двигатель является ярким представителем бесшатунных ДВС, наряду с двигателем Баландина.

Газовые двигателиПравить

Основная статья: Газовый двигатель

Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

  • смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
  • сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.
  • генераторный газ — газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются: уголь, торф, древесина.

Эти двигатели имеют широкое применение, например, в электростанциях малой и средней мощности, использующих в качестве топлива природный газ (в области высоких мощностей безраздельно властвуют газотурбинные энергоблоки).

Поршневой ДВС с воспламенением от сжатияПравить

Основная статья: Дизельный двигатель

В дизельном двигателе воспламенение топлива происходит без свечи зажигания. В разогретый от адиабатического сжатия в цилиндре воздух через форсунку впрыскивается и распыляется порция топлива. Затем вокруг отдельных капель топливной смеси возникают очаги сгорания, и по мере впрыскивания топливная смесь сгорает в виде факела. Так как дизельные двигатели не подвержены детонации (из-за постепенной подачи и сгорания топлива), степень сжатия детонацией не ограничена. Повышение её свыше 15 практически роста КПД не даёт[7], поскольку при этом максимальное давление ограничивают путём более длительного сгорания и уменьшением угла опережения впрыска. Однако малоразмерные вихрекамерные дизели могут иметь степень сжатия до 26, для надёжного воспламенения в условиях большого теплоотвода и меньшей жёсткости работы. Крупногабаритные судовые дизели с наддувом имеют степень сжатия порядка 11..14 и КПД более 50%[8].

Дизельные двигатели обычно менее быстроходны, поэтому при равной мощности с бензиновым характеризуются большим крутящим моментом на валу. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжёлых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счёт пневматической схемы с запасом сжатого воздуха, либо, в случае с дизель-генераторными установками, от присоединённого электрического генератора, который при запуске выполняет роль стартера.

Современные двигатели, называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера — Сабатэ со смешанным подводом теплоты. Недостатки их обусловлены особенностями рабочего цикла — более высокой механической напряжённостью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет гетерогенного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Газодизельный двигательПравить

Основная статья: Газодизельный двигатель

Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю. Обычно имеется возможность работы по чисто дизельному циклу. Применение: тяжёлые грузовики. Газодизельные двигатели, как и газовые, дают меньше вредных выбросов, к тому же природный газ дешевле. Такой двигатель зачастую получают дооснащением серийного, при этом экономия дизтоплива (степень замещения газом) составляет порядка 60%[9]. Зарубежные фирмы также активно разрабатывают такие конструкции[10].

Комбинированный двигатель внутреннего сгоранияПравить

Комбинированный двигатель внутреннего сгорания представляет собой комбинацию из поршневой и лопаточной машин (турбина, компрессор), в котором обе машины в соотносимой мере участвуют в осуществлении рабочего процесса. Примером комбинированного ДВС служит поршневой двигатель с газотурбинным наддувом (турбонаддув). Большой вклад в теорию комбинированных двигателей внёс советский инженер, профессор А. Н. Шелест.

Наиболее распространённым типом комбинированных двигателей является поршневой с турбонагнетателем. Турбонагнетатель или турбокомпрессор (ТК, ТН) — это нагнетатель, который приводится в движение выхлопными газами. Получил своё название от слова «турбина» (фр. turbine от лат. turbo — вихрь, вращение). Это устройство состоит из двух частей: роторного колеса турбины, приводимого в движение выхлопными газами, и центробежного компрессора, закреплённых на противоположных концах общего вала. Струя рабочего тела (в данном случае, выхлопных газов) воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение вместе с валом, который изготовляется единым целым с ротором турбины из сплава, близкого к легированной стали. На валу, помимо ротора турбины, закреплён ротор компрессора, изготовленный из алюминиевых сплавов, который при вращении вала позволяет нагнетать воздух в цилиндры ДВС. Таким образом, в результате действия выхлопных газов на лопатки турбины одновременно раскручиваются ротор турбины, вал и ротор компрессора. Применение турбокомпрессора совместно с промежуточным охладителем воздуха (интеркулером) позволяет обеспечивать подачу более плотного заряда в цилиндры ДВС (в современных турбированных двигателях используется именно такая схема).

Двигатели с турбонагнетанием (комбинированные) до появления реактивных были единственно возможными в авиации, ввиду падения плотности воздуха с высотой; имеют широкое применение в дизельных двигателях (позволяя повысить удельные показатели мощности до уровня искровых ДВС и выше), реже в бензиновых. Благодаря настройке турбонаддува (регулятор давления), а также настройкам ГРМ, которые вместе определяют наполнение цилиндров двигателя, можно настраивать его транспортную характеристику.

Характеристики ДВСПравить

Потребительские качества двигателя (принимая за образец классический поршневой или комбинированный двигатель, отдающий крутящий момент) можно охарактеризовать следующими показателями:

  1. Массовые показатели, в кг на литр рабочего объёма (обычно от 30 до 80), и в кг на 1 л.с. (1 кВт). Они важнее для транспортных, особенно авиационных, двигателей.
  2. Удельный расход топлива, г/л.с.*час (г/кВт*ч), или для конкретных видов топлив с разной плотностью и агрегатным состоянием, л/кВт*ч, м3/кВт*ч.
  3. Ресурс в часах (моточасах). Некоторые применения ДВС не требуют большого ресурса (пусковые ДВС, двигатели торпед), и потому в их конструкции могут отсутствовать, например, фильтры для масла и воздуха.
  4. Экологические характеристики (как самостоятельные, так и в составе транспортного средства), определяющие возможность его эксплуатации.
  5. Транспортные характеристики, определяющие кривую крутящего момента в зависимости от числа оборотов. При работе двигателя по винтовой характеристике, обычно без трансмиссии, специальная корректировка транспортной характеристики не требуется, но в автомобилях и тракторах хорошая транспортная характеристика (высокий запас крутящего момента, тихоходная настройка) позволяют уменьшить число передач в трансмиссии и облегчить управление.
  6. Шумность двигателя, зачастую определяемая его применением в люксовых моделях автомобилей или подводных лодках. Для снижения шумности часто снижают жёсткость подвески двигателя, усложняют схемы выпуска газов (например, выпуск газов через винт в подвесных моторах), а также капотируют.


Влияние ДВС на экологию, а также экологических требований на конструкцию ДВСПравить

В таких вариантах ДВС, как газотурбинные и реактивные, сгорание организовано непрерывно, причём максимальная температура меньше. Поэтому они имеют обычно меньшие выбросы недогоревших углеводородов (по причине меньшей области гашения) и выбросы окислов азота (по причине меньшей температуры). Температура в таких двигателях ограничена теплостойкостью лопаток, сопел, направляющих, и для двигателей с большим ресурсом обычно не превышает 1000 оС. Улучшения экологических показателей, например, ракет, достигают обычно подбором топлив (например, вместо НДМГ и перекиси азота применяют жидкие кислород и водород).

Однако, сотни миллионов регулярно используемых транспортных двигателей, потребляя ежедневно огромное количество нефтепродуктов[11], дают в сумме большие вредные выбросы. Их разделяют на углеводороды (CH), окись углерода (CO), и окислы азота (NOx). Также ранее использовали этилированный бензин, продукты сгорания которого содержали практически не выводимый из организма человека свинец. Наиболее это сказывается в крупных городах, расположенных в низинах и окруженных возвышенностями: при безветрии в них образуется смог.

В первые десятилетия развития автотранспорта этому не уделялось достаточное внимание, поскольку автомобилей было меньше. В дальнейшем производителей обязали соблюдать определённые нормы выбросов, причём они становятся строже. Для уменьшения выбросов в принципе возможны три способа:

  1. Выбор экологически чистого топлива (водород, природный газ) или улучшение традиционного жидкого (бензин и дизтопливо "Евро-5").
  2. Изменение параметров цикла двигателя или разработка новых (снижение степени сжатия, расслоение заряда, внутрицилиндровый впрыск, системы компьютерного управления с использованием датчиков кислорода, система Common rail на дизелях, и др.).
  3. Снижение содержания вредных выбросов с использованием термических (ранее) и каталитических (в настоящее время) катализаторов.

Существующие нормы токсичности в развитых странах требуют обычно применения всех этих способов сразу. При этом обычно ухудшается экономичность как автомобилей, так и всего транспортного (включая нефтеперегонные заводы) комплекса, поскольку оптимумы циклов по экономичности и экологичности у двигателей обычно не совпадают, а изготовление высокоэкологичного топлива требует больше энергии.


Уровень развития ДВС как мерило технического прогрессаПравить

Разработка ДВС нетривиальна, поскольку к цели идёт множество путей. Выбор лучшего (применительно к конкретной области и требованиям) является примером многофакторной оптимизации. Здесь недостаточно интуиции, нужны большие затраты при разработке вариантов, ресурсные испытания. Тенденции развития двигателестроения предоставляют много вариантов дальнейшего развития[12].

Высокие требования к деталям ДВС, сложности технологического порядка (материалы, обработка), производственный цикл (поточность, возможность брака), масштабы производства (миллионы единиц), высокий уровень конкуренции и интеграции мировой экономики, в совокупности позволяют судить об уровне технологии государства по уровню выпускаемых ДВС. Высокоэффективные двигатели не только позволяют создавать экономичный и экологичный транспорт, но и вести независимую разработку в таких областях как военное дело, ракетостроение (в частности, космические программы). Высокотехнологичные производства сами по себе служат центром кристаллизации инженерных сообществ, рождению новых идей. Не случайно, например, конвейерная сборка была впервые внедрена именно на сборке автомобилей (оснащённых ДВС). В свою очередь, поддержание в исправном состоянии и управление многочисленными транспортными средствами также создало множество новых профессий, рабочих мест, методов ведения бизнеса и даже образа жизни (коммивояджеры, путешественники). Не будет преувеличением сказать, что появление ДВС революционизировало весь мир[13].

См. такжеПравить

ПримечанияПравить

  1. 1 2 ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ • Большая российская энциклопедия - электронная версия. bigenc.ru. Дата обращения 15 июля 2019.
  2. Типы судовых паровых машин, их достоинства и недостатки.. lektsii.org. Дата обращения 22 июля 2019.
  3. ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ • Большая российская энциклопедия - электронная версия. bigenc.ru. Дата обращения 25 июля 2019.
  4. История двигателя внутреннего сгорания. azbukadvs.ru. Дата обращения 25 июля 2019.
  5. Типы двигателей внутреннего сгорания. carsweek.ru. Дата обращения 22 июля 2019.
  6. Классификация ДВС.
  7. Процесс сжатия в поршне. vdvizhke.ru. Дата обращения 15 июля 2019.
  8. Дорохов Павел Александрович, Нгуен Динь Хиеп. Исследование влияния степени сжатия на показатели судового ДВС // Вестник Астраханского государственного технического университета. Серия: Морская техника и технология. — 2009. — Вып. 1. — ISSN 2073-1574.
  9. Газодизель на метане | Газ в моторы (рус.)  (неопр.) ?. Дата обращения 25 июля 2019.
  10. Технические особенности газо дизелей и анализ экспериментально-теоретических исследований газодизельного процесса. Studref. Дата обращения 25 июля 2019.
  11. Запасы нефти в мире и потребление Онлайн (рус.)  (неопр.) ?. Дата обращения 25 июля 2019.
  12. Перспективы развития двигателей внутреннего сгорания (Судостроение / Технологии) - Barque.ru. www.barque.ru. Дата обращения 18 июля 2019.
  13. http://engine.aviaport.ru/issues/105/pics/pg06.pdf

ЛитератураПравить

  1. Кушуль В. М. Знакомьтесь: двигатель нового типа. - Л.: Судостроение, 1966. - 120 с.
  2. Судовые двигатели внутреннего сгорания: учеб. / Ю. Я. Фомин, А. И. Горбань, В. В. Добровольский, А. И. Лукин и др. - Л.: Судостроение, 1989. - 344 с.
  3. Двигатели внутреннего сгорания. Теория рабочих процессов поршневых и комбинированных двигателей / под ред. А. С. Орлина, Д. Н. Вырубова. - М.: Машиностроение, 1971. - 400 с.
  4. Демидов В. П. Двигатели с переменной степенью сжатия. - М.: Машиностроение, 1978. - 136 с.
  5. Махалдиани В. В, Эджибия И. Ф. Двигатели внутреннего сгорания с автоматическим регулированием степени сжатия. - Тбилиси, 1973. - 272 с.

СсылкиПравить