Заряд (теория меры)

Заряд — вещественнозначная конечно-аддитивная функция множества, определённая на некоторой -алгебре, (например, борелевских подмножеств).

В отличие от обычной меры, под которой обычно понимают неотрицательную -аддитивную функцию множества, заряд может принимать и отрицательные значения и не обязательно быть счётно-аддитивным.

При этом термин «заряд» и «конечно-аддитивная мера» — это синонимы.

Множество всех зарядов над произвольным множеством c сигма-алгеброй принято обозначать .

Связанные определенияПравить

  • Положительный заряд   называется чисто конечно аддитивным, если для любой неотрицательной счётно-аддитивной меры   из   вытекает, что  .
    • Произвольный заряд чисто конечно аддитивен, если таковы заряды   и  .
  • Заряд   абсолютно непрерывен относительно меры   , если  

СвойстваПравить

  • Множество всех зарядов образует нормированную решётку и даже, более того,  -пространство.
  • Для любого заряда   имеется положительная часть   и отрицательная часть  . Имеет место разложение Хана — Жордана  , в силу которого свойства зарядов могут быть выражены в терминах теории меры.
  • Пусть  .
    Любой заряд   единственным образом представим в виде суммы  , где   абсолютно непрерывна относительно   и   дизъюнктна  . Такое представление меры   принято назвать разложением по Лебегу.
  • Любой заряд   единственным образом представим в виде суммы  , где   — произвольная счётно-аддитивная мера, а   — произвольная чисто конечно-аддитивный заряд. Такое разложение иногда называют разложением Иосиды — Хьюита.
  • Пространство   является топологически сопряжённым к пространству измеримых и ограниченных функций, заданных над данным измеримым пространством.

ИсторияПравить

Термин «заряд» был впервые введён А. Д. Александровым. Изучение заряда послужило толчком для развития конечно-аддитивной теории меры (1940-е годы).

См. такжеПравить

ЛитератураПравить

  • Данфорд Н., Шварц Дж. Линейные операторы. Общая теория. — М.: ИЛ, 1962.
  • Ландкоф Н. С. Основы современной теории потенциалов. — М., 1966.
  • Халмош П. Теория меры. // Пер. с англ. — М., 1953.
  • Alexandroff A. D. Additive set-functions in abstract spaces I // Матем. сборник 1940. V.8(50), N 2. P.307-348.
  • Alexandroff A. D. Additive set-functions in abstract spaces II // Матем. сборник 1941. V.9(51), N 3. P.563-628.
  • Alexandroff A. D. Additive set-functions in abstract spaces III // Матем. сборник 1943. V.13(55), N 2. P.169-293.
  • Yosida K., Hewitt E. Finitely additive mesures // Trans. Amer. Math. Soc. 1952. v. 72, N 1. P. 46—66.