Канторово множество

Ка́нторово мно́жество (канторов дисконтинуум, канторова пыль) — один из простейших фракталов, подмножество единичного отрезка вещественной прямой, которое является классическим примером дисконтинуума в математическом анализе.

Описано в 1883 году Георгом Кантором. Этим он ответил на следующий вопрос Магнуса Миттаг-Леффлера заданный в письме от 21 июня 1882 года:[1]

Пусть обозначает множество предельных точек множества . Существует ли нигде неплотное множество , такое что пересечение
не пусто?

ОпределенияПравить

Классическое построениеПравить

Из единичного отрезка   удалим среднюю треть, то есть интервал  . Оставшееся точечное множество обозначим через  . Множество   состоит из двух отрезков; удалим теперь из каждого отрезка его среднюю треть, и оставшееся множество обозначим через  . Повторив эту процедуру опять, удаляя средние трети у всех четырёх отрезков, получаем  . Дальше таким же образом получаем последовательность замкнутых множеств  . Пересечение

 

называется канторовым множеством.

 

Множества  

С помощью троичной записиПравить

Канторово множество может быть также определено как множество чисел от нуля до единицы, которые можно представить в троичной записи с помощью только нулей и двоек. При этом следует отметить, что число принадлежит канторовому множеству, если у него есть хотя бы одно такое представление, например  , так как  .

Как аттракторПравить

Канторово множество может быть определено как аттрактор. Рассмотрим все последовательности точек   такие, что для любого  

  или  .

Тогда множество пределов всех таких последовательностей является канторовым множеством.

Как счётная степень простого двоеточияПравить

В литературе по общей топологии канторово множество определяется как счётная степень двухточечного дискретного пространства —  [2]; такое пространство гомеоморфно классически построенному канторову множеству (с обычной евклидовой топологией)[3][4].

СвойстваПравить

Вариации и обобщенияПравить

Канторов куб (обобщённый канторов дисконтинуум) веса   —  -я степень двухточечного дискретного пространства  . Канторов куб универсален для всех нульмерных пространств веса не больше  . Каждый хаусдорфов компакт веса не больше   есть непрерывный образ подпространства канторова куба  .

Диадический компакт[en] — компакт, представимый как непрерывный образ канторова куба. Диадическое пространство[en][5] — топологическое пространство, для которого существует компактификация, являющаяся диадическим компактом.

См. такжеПравить

ПримечанияПравить

  1. Moore, Gregory H. The emergence of open sets, closed sets, and limit points in analysis and topology (англ.) // Historia Math. — 2008. — Vol. 35, no. 3. — P. 220–241.
  2. Энгелькинг, 1986, с. 136.
  3. Энгелькинг, 1986, с. 207—208.
  4. Канторово множество — статья из Математической энциклопедии. В. В. Федорчук
  5. Диадическое пространство — статья из Математической энциклопедии. В. А. Ефимов

ЛитератураПравить

  • Энгелькинг Р. . Общая топология. — М.: Мир, 1986. — 752 с.