Открыть главное меню

Квантовый гармонический осциллятор

Гармонический осциллятор в квантовой механике представляет собой квантовый аналог простого гармонического осциллятора, при этом рассматривают не силы, действующие на частицу, а гамильтониан, то есть полную энергию гармонического осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.

Задача о гармоническом осцилляторе в координатном представленииПравить

 
Волновые функции в координатном представлении первых восьми состояний,  . По горизонтали отложена координата  , по вертикали — значение волновой функции  . Графики не нормированы.

Гамильтониан квантового осциллятора массы m, собственная частота которого ω, выглядит так:

 

В координатном представлении   ,  . Задача об отыскании уровней энергии гармонического осциллятора сводится к нахождению таких чисел E при которых дифференциальное уравнение в частных производных

 

имеет решение в классе квадратично интегрируемых функций.

Для  

решение имеет вид:

 

функции   — полиномы Эрмита:

 

Данный спектр значений E заслуживает внимания по двум причинам: во-первых, уровни энергии дискретны и равноотстоящи (эквидистантны), то есть разница в энергии между двумя соседними уровнями постоянна и равна  , во-вторых наименьшее значение энергии равно  . Этот уровень называют основным, вакуумом, или уровнем нулевых колебаний.

Операторы рождения и уничтоженияПравить

Основная статья: Вторичное квантование

Гораздо проще спектр гармонического осциллятора можно получить с помощью операторов рождения и уничтожения, сопряжённых друг другу.

Оператор рождения —  , оператор уничтожения —  , их коммутатор равен

 

С помощью операторов рождения и уничтожения гамильтониан квантового осциллятора записывается в компактном виде:

 

где   — оператор номера уровня (чисел заполнения). Собственные вектора такого гамильтониана являются фоковскими состояниями, а представление решения задачи в таком виде называется «представлением числа частиц».

Ангармонический осцилляторПравить

Под ангармоническим осциллятором понимают осциллятор с неквадратичной зависимостью потенциальной энергии от координаты. Простейшим приближением ангармонического осциллятора является приближение потенциальной энергии до третьего слагаемого в ряде Тейлора:

 

Точное решение задачи о спектре энергии такого осциллятора довольно трудоёмкое, однако можно вычислить поправки к энергии, если предположить, что кубическое слагаемое мало по сравнению с квадратичным, и воспользоваться теорией возмущений.

В представлении операторов рождения и уничтожения (представление вторичного квантования), кубическое слагаемое равно

 

Этот оператор имеет нулевые диагональные элементы, а потому первая поправка теории возмущений отсутствует. Вторая поправка к энергии произвольного невакуумного состояния   равна

 

Многочастичный квантовый осцилляторПравить

В простейшем случае взаимодействия нескольких частиц можно применить модель многочастичного квантового осциллятора, подразумевая взаимодействие соседних частиц по квадратичному закону:

 

Здесь под   и   подразумеваются отклонение от положения равновесия и импульс  -той частицы. Суммирование ведётся только по соседним частицам.

Такая модель приводит к теоретическому обоснованию фононов — Бозе-квазичастиц, наблюдающихся в твёрдом теле.

Переходы под влиянием внешней силыПравить

Под влиянием внешней силы   квантовый осциллятор может переходить с одного уровня энергии ( ) на другой ( ). Вероятность этого перехода   для осциллятора без затухания даётся формулой:

 ,

где функция   определяется как:

 ,

а   — полиномы Лагерра.

См. такжеПравить

ЛитератураПравить

Ландау, Л. Д., Лифшиц, Е. М. Квантовая механика (нерелятивистская теория). — Издание 3-е, переработанное и дополненное. — М.: Наука, 1974. — 752 с. — («Теоретическая физика», том III).