Открыть главное меню

Алгебраическая топология

(перенаправлено с «Комбинаторная топология»)

Алгебраи́ческая тополо́гия (устаревшее название: комбинаторная топология) — раздел топологии, изучающий топологические пространства путём сопоставления им алгебраических объектов (групп, колец и т. д.), а также поведение этих объектов под действием различных топологических операций.

Основные методыПравить

Методы алгебраической топологии основаны на предположении, что общеалгебраические структуры устроены проще, чем топологические.

Помимо различных гомологий (сейчас очень большое значение приобрели экстраординарные гомологии, например теория бордизмов или  -теория) для алгебраической топологии важны гомотопические группы  . Из них главной является   — так называемая фундаментальная группа, которая, в отличие от групп всех других размерностей, может быть неабелевой.

Важным инструментом алгебраической топологии являются так называемые группы гомологий (например, симплициальные или сингулярные). Каждому топологическому пространству   соответствует в каждой размерности   своя абелева группа гомологий  , а каждому непрерывному отображению   соответствует гомоморфизм групп  , причём произведению отображений   соответствует произведение гомоморфизмов  , а тождественному отображению   соответствует тождественный изоморфизм  . (На языке теории категорий это означает, что группа гомологий является ковариантным функтором из категории топологических пространств в категорию абелевых групп.)

Пример методикиПравить

Одним из классических примеров применения методов алгебраической топологии является доказательство теоремы Брауэра о неподвижной точке. Утверждение теоремы состоит в том, что всякое непрерывное отображение замкнутого  -мерного шара в себя   обладает неподвижной точкой, то есть  .

Для доказательства используется следующая лемма: не существует непрерывного отображения    -мерного шара   на свою границу ( -мерную сферу  ) такого, что   для всех точек границы (ретракции). В самом деле, если у отображения   нет неподвижных точек, то возможно построить отображение   шара на сферу, проведя для каждой точки шара   луч, выходящий из   и проходящий через   (в случае отсутствия неподвижных точек это разные точки); пусть точка пересечения луча со сферой   , и  . Отображение   непрерывно, и если   принадлежит сфере, то  . Таким образом, получена ретракция шара на сферу, что по лемме невозможно, то есть неподвижные точки (хотя бы одна) должны существовать.

Для доказательства леммы предполагается, что существует такая ретракция  . Для вложения сферы в шар   выполнено следующее свойство: произведение отображений   — тождественное отображение сферы (вначале  , затем  ). Далее показывается, что  , а  . Тогда отображение   будет отображением в 0, но, с другой стороны, так как  , имеем   — является не нулевым гомоморфизмом, а тождественным изоморфизмом.

При этом имеются и неалгебраические доказательства теоремы Брауэра, но введение гомологий сразу позволило легко доказать множество утверждений, ранее казавшихся не связанными друг с другом.

ИсторияПравить

Некоторые теоремы алгебраической топологии были известны ещё Эйлеру, например, что для всякого выпуклого многогранника с числом вершин  , рёбер   и граней   имеет место  .

Топологическими вопросами интересовались Гаусс и Риман.

Но основную роль в создании алгебраической топологии как науки сыграл Пуанкаре — именно ему принадлежат понятия симплициальных гомологий и фундаментальной группы. Большой вклад внесли Александер, Веблен, Лефшец, Уайтхед, Борсук, Гуревич, Стинрод, Эйленберг, Серр, Том, Атья, Хирцебрух, Ботт, Адамс, Смейл, Милнор, Квиллен; из советских/российских математиков необходимо отметить П. С. Александрова, Колмогорова, Понтрягина, Люстерника, Рохлина, Новикова, Фоменко, Концевича, Воеводского, Перельмана.

ЛитератураПравить

  • Васильев В. А. Введение в топологию. — М.: Фазис, 1997
  • Вик Дж. У. Теория гомологий. Введение в алгебраическую топологию. — М.: МЦНМО, 2005
  • Виро О. Я., Иванов О. А., Харламов В. М., Нецветаев Н. Ю. Задачный учебник по топологии
  • Дольд А. Лекции по алгебраической топологии. — М.: Мир, 1976
  • Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия: Методы и приложения. — М.: Наука, 1979
  • Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия: Методы теории гомологий. — М.: Наука, 1984
  • Зейферт Г., Трельфалль В. Топология. — Ижевск: РХД, 2001
  • Коснёвски Ч. Начальный курс алгебраической топологии. — М.: Мир, 1983
  • Лефшец С. Алгебраическая топология. — М.: ИЛ, 1949
  • Новиков П. С. Топология. — 2 изд., испр. и доп. — Ижевск: Институт компьютерных исследований, 2002
  • Прасолов В. В. Элементы теории гомологий. — М.: МЦНМО,2006
  • Свитцер Р. М. Алгебраическая топология — гомотопии и гомологии. — М.: Наука, 1985
  • Спеньер Э. Алгебраическая топология. — М.: Мир, 1971
  • Стинрод Н., Эйленберг С. Основания алгебраической топологии. — М.: Физматгиз, 1958
  • Фоменко А. Т., Фукс Д. Б. Курс гомотопической топологии. — М.: Наука, 1989