Открыть главное меню

Комплекснозначная функция в теории функций вещественной переменной — функция, принимающая комплексные значения: .

Такая функция может быть представлена в виде:

,

где и  — вещественные функции. В этом случае функция называется вещественной частью функции , а  — её мнимой частью. В связи с таким разложением, на комплекснозначные функции естественным образом переносятся все понятия, вводимые для вещественнозначных функций, в частности, комплекснозначная функция считается непрерывной (дифференцируемой, аналитической, измеримой, гармонической), если её вещественная и мнимая части являются непрерывными (дифференцируемыми, аналитическими, измеримыми, гармоническими) функциями. Интеграл комплекснозначной функции определяется следующим образом:

.

Однако не все свойства, выполненные для вещественной и мнимой части одновременно, могут быть распространены на комплекснозначные функции. В частности, для комплекснозначных функций в общем случае не действует теорема Ролля, например, производная комплекснозначной функции вещественного аргумента:

на интервале не обращается в нуль, хотя в конечных точках отрезка значения функции равны .

ЛитератураПравить

  • Титчмарш Е. Теория функций. — 2-е изд., перераб. — М.: Наука, 1980. — 464 с.