Габриэ́ль Кра́мер (нем. Gabriel Cramer, 31 июля 1704, Женева, Швейцария4 января 1752, Баньоль-сюр-Сез, Франция) — швейцарский математик, ученик и друг Иоганна Бернулли, один из создателей линейной алгебры.

Габриэль Крамер
нем. Gabriel Cramer
Дата рождения 31 июля 1704(1704-07-31)
Место рождения Женева, Швейцария
Дата смерти 4 января 1752(1752-01-04) (47 лет)
Место смерти Баньоль-сюр-Сез, Франция
Страна
Род деятельности математик, физик, преподаватель университета
Награды и премии
Логотип Викисклада Медиафайлы на Викискладе

Биография править

Крамер родился в семье франкоязычного врача. С раннего возраста показал большие способности в области математики. В 18 лет защитил диссертацию. В 20-летнем возрасте Крамер выставил свою кандидатуру на вакантную должность преподавателя на кафедре философии Женевского университета. Кандидатур было три, все произвели хорошее впечатление, и магистрат принял соломоново решение: учредить отдельную кафедру математики и направить туда (на одну ставку) двух «лишних», включая Крамера, с правом путешествовать по очереди за свой счёт.

1727: Крамер воспользовался этим правом и 2 года путешествовал по Европе, заодно перенимая опыт у ведущих математиков — Иоганна Бернулли и Эйлера в Базеле, Галлея и де Муавра в Лондоне, Мопертюи и Клеро в Париже и других. По возвращении он вступает с ними в переписку, продолжавшуюся всю его недолгую жизнь.

1728: Крамер находит решение Санкт-Петербургского парадокса, близкое к тому, которое 10 годами спустя публикует Даниил Бернулли.

1729: Крамер возвращается в Женеву и возобновляет преподавательскую работу. Он участвует в конкурсе, объявленном Парижской Академией, задание в котором: есть ли связь между эллипсоидной формой большинства планет и смещением их афелиев? Работа Крамера занимает второе место (первый приз получил Иоганн Бернулли).

В свободное от преподавания время Крамер пишет многочисленные статьи на самые разные темы: геометрия, история математики, философия, приложения теории вероятностей. Крамер также публикует труд по небесной механике (1730) и комментарий к ньютоновской классификации кривых третьего порядка (1746).

Около 1740 года Иоганн Бернулли поручает Крамеру хлопоты по изданию сборника собрания своих трудов. В 1742 году Крамер публикует сборник в 4 томах, а вскоре (1744) выпускает аналогичный (посмертный) сборник работ Якоба Бернулли и двухтомник переписки Лейбница с Иоганном Бернулли. Все эти издания имели огромный резонанс в научном мире.

1747: второе путешествие в Париж, знакомство с Даламбером.

1751: Крамер получает серьёзную травму после дорожного инцидента с каретой. Доктор рекомендует ему отдохнуть на французском курорте, но там его состояние ухудшается, и 4 января 1752 года Крамер умирает.

«Введение в анализ алгебраических кривых» править

 
Титульный лист «Введения в анализ алгебраических кривых»

Самая известная из работ Крамера — изданный незадолго до кончины трактат «Введение в анализ алгебраических кривых», опубликованный на французском языке («Introduction à l’analyse des lignes courbes algébraique», 1750 год). В нём впервые доказывается, что алгебраическая кривая n-го порядка в общем случае полностью определена, если заданы её n(n + 3)/2 точек. Для доказательства Крамер строит систему линейных уравнений и решает её с помощью алгоритма, названного позже его именем: метод Крамера.

Крамер рассмотрел систему произвольного количества линейных уравнений с квадратной матрицей. Решение системы он представил в виде столбца дробей с общим знаменателем — определителем матрицы. Термина «определитель» (детерминант) тогда ещё не существовало (его ввёл Гаусс в 1801 году), но Крамер дал точный алгоритм его вычисления: алгебраическая сумма всевозможных произведений элементов матрицы, по одному из каждой строки и каждого столбца. Знак слагаемого в этой сумме, по Крамеру, зависит от числа инверсий соответствующей подстановки индексов: плюс, если чётное. Что касается числителей в столбце решений, то они подсчитываются аналогично: n-й числитель есть определитель матрицы, полученной заменой n-го столбца исходной матрицы на столбец свободных членов.

Методы Крамера сразу же получили дальнейшее развитие в трудах Безу, Вандермонда и Кэли, которые и завершили создание основ линейной алгебры. Теория определителей быстро нашла множество приложений в астрономии и механике (вековое уравнение), при решении алгебраических систем, исследовании форм и т. д.

Крамер провёл классификацию алгебраических кривых до пятого порядка включительно. Любопытно, что во всём своём содержательном исследовании кривых Крамер нигде не использует математический анализ, хотя он, бесспорно, владел этими методами.

Литература править