Метод Гаусса (оптимизация)

Метод Гаусса[1] — прямой метод решения задач многомерной оптимизации.

ОписаниеПравить

Пусть необходимо найти минимум действительнозначной функции  , а   — начальное приближение.

Суть метода заключается в том, чтобы на каждой итерации по очереди минимизировать функцию вдоль каждой из координат, то есть:

 
 ,

где   — ортонормированный базис в рассматриваемом пространстве.

Таким образом метод как бы «поднимется» по координатам, используя на шагах одной итерации для вычисления следующей координаты точки приближения все предыдущие значения координат, вычисленные на той же итерации, в этом и состоит схожесть с одноимённым методом решения СЛАУ.

При завершении итерации, точка, полученная на последнем шаге этой итерации, берётся в качестве следующего приближения:

 .

Процедура продолжается до тех пор, пока не будет достигнута заданная точность  , то есть пока:

 .

Улучшением данного метода является метод покоординатного спуска Гаусса - Зейделя.

ПримечанияПравить

ЛитератураПравить

  • Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. Пер. с англ. — М.: Мир, 1985.
  • Максимов Ю.А.,Филлиповская Е.А. Алгоритмы решения задач нелинейного программирования. — М.: МИФИ, 1982.

См. такжеПравить