Метод бесконечного спуска

Метод бесконечного спуска — метод доказательства от противного, основанный на том, что множество натуральных чисел вполне упорядочено. Существенно развит Пьером Ферма.

Часто используется для доказательства того, что у некоторого уравнения нет решений по следующей схеме: из предположения, что решение существует, доказывается существование другого решения, которое в некотором смысле меньше, тогда можно построить бесконечную цепочку решений, каждое из которых меньше предыдущего, это вызывает противоречие с тем, что в любом непустом подмножестве натуральных чисел есть минимальный элемент, значит предположение о существовании начального решения неверно.

ПримерПравить

Для доказательства иррациональности   с использованием метода бесконечного спуска оно предполагается рациональным числом:

 

для некоторых натуральных чисел   и  . Тогда квадрат этого числа равен:

 ,

то есть  . Это означает, что   — чётное число. Для  :  , при подстановке   вместо  :  . Деление на 2 обеих частей даёт:  , значит,   — также чётное число. Таким образом, исходные числа   и   можно одновременно разделить на 2 и получить другое представление  . С полученными числами можно проделать ту же операцию, и так далее бесконечное число раз. Таким образом строится бесконечно убывающая последовательность натуральных чисел, что невозможно. То есть,   не является рациональным числом.

СсылкиПравить