Минимальная поверхность

Минимальная поверхность — гладкая поверхность с нулевой средней кривизной. Название объясняется тем, что гладкая поверхность с заданным контуром, минимизирующая площадь, является минимальной.

ПримерыПравить

СвойстваПравить

  • Асимптотические линии на минимальной поверхности образуют изотермическую сеть.
  • Вообще говоря минимальная поверхность с краем может не иметь минимальной площади среди всех поверхностей с данным контуром. Но любая точка минимальной поверхности содержится в диске, минимизирующем площадь при данном контуре.
    • Более того, если компактная минимальная поверхность является графиком   гладкой функции, определённой на выпуклой области в  -плоскости, то она минимизирует площадь среди всех поверхностей с данной границей.[1]
  • Формула монотонности

ИсторияПравить

Первые исследования минимальных поверхностей восходят к Лагранжу (1768), который рассмотрел следующую вариационную задачу: найти поверхность наименьшей площади, натянутую на данный контур. Предполагая искомую поверхность задаваемой в виде  , Лагранж получил, что эта функция должна удовлетворять уравнению Эйлера — Лагранжа.

Позже Монж (1776) обнаружил, что условие минимальности площади поверхности влечёт, что её средняя кривизна равна нулю. Поэтому за поверхностями с   закрепилось название «минимальные». В действительности, однако, нужно различать понятия минимальной поверхности и поверхности наименьшей площади, так как условие   представляет собой лишь необходимое условие минимальности площади, вытекающее из равенства нулю 1-й вариации площади поверхности среди всех поверхностей с заданной границей.

ПримечанияПравить

  1. Harvey, Reese; Lawson, H. Blaine, Jr. Calibrated geometries. Acta Math. 148 (1982), 47–157.

СсылкиПравить