Открыть главное меню

Модули римановой поверхности — численные характеристики (параметры), одни и те же для всех конформно эквивалентных римановых поверхностей, в своей совокупности характеризующие конформный класс эквивалентности данной римановой поверхности.

МотивацияПравить

Необходимым условием конформной эквивалентности двух плоских областей является одинаковая связность этих областей. Согласно теореме Римана все односвязные области с более чем одной граничной точкой конформно эквивалентны друг другу: каждую такую область можно конформно отобразить на одну и ту же каноническую область, в качестве которой обычно рассматривают единичный круг. Для областей связности n, n>2, точного эквивалента теоремы Римана не существует: нельзя указать какую-либо фиксированную область, на которую можно однолистно и конформно отобразить все области данного порядка связности. Это привело к более гибкому определению канонической n-связной области, которое указывает общую геометрическую структуру этой области, но не фиксирует её модулей.

ПримерыПравить

  • конформные классы компактных римановых поверхностей рода   характеризуются   действительными модулями;
  • тор ( ) характеризуется двумя модулями;
  •  -связная плоская область, рассматриваемая как риманова поверхность с краем, при   характеризуется   модулями.
  • Каждая двусвязная область   плоскости   с невырожденными граничными континуумами может быть конформно отображена на некоторое круговое кольцо
 ,  .
Отношение   радиусов граничных окружностей этого кольца является конформным инвариантом и называется модулем двусвязной области  .

ЛитератураПравить