Модуль Юнга

(перенаправлено с «Модуль продольной упругости»)

Мо́дуль Ю́нга (синонимы: модуль продольной упругости, модуль нормальной упругости) — физическая величина, характеризующая способность материала сопротивляться растяжению, сжатию при упругой деформации[1]. Обозначается большой буквой Е.

Модуль Юнга
Размерность L−1MT−2
Единицы измерения
СИ Па
СГС дин·см-2

Назван в честь английского физика XIX века Томаса Юнга.

В динамических задачах механики модуль Юнга рассматривается в более общем смысле — как функционал деформируемой среды и процесса.

В Международной системе единиц (СИ) измеряется в ньютонах на квадратный метр или в паскалях. Является одним из модулей упругости.

Модуль Юнга рассчитывается следующим образом:

где:

  •  — нормальная составляющая силы,
  •  — площадь поверхности, по которой распределено действие силы,
  •  — длина деформируемого стержня,
  •  — модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина ).

Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:

где  — плотность вещества.

Связь с другими модулями упругости править

В случае изотропного тела модуль Юнга связан с модулем сдвига   и модулем объёмной упругости   соотношениями

 

и

 

где   — коэффициент Пуассона.

Температурная зависимость модуля Юнга править

Температурная зависимость модуля упругости простых кристаллических материалов объясняется исходя из того, что модуль упругости   определяется как вторая производная от внутренней энергии   по соответствующей деформации   . Поэтому при температурах   (  — температура Дебая) температурная зависимость модуля упругости определяется простым соотношением

 

где   — адиабатический модуль упругости идеального кристалла при  ;   — дефект модуля, обусловленный тепловыми фононами;   — дефект модуля, обусловленный тепловым движением электронов проводимости[2].

Значения модуля Юнга для некоторых материалов править

Значения модуля Юнга для некоторых материалов приведены в таблице

Материал модуль Юнга E, ГПа Источник
Алюминий 70 [3]
Бронза 75—125 [3]
Вольфрам 350 [3]
Германий 83 [3]
Графен 1000 [4]
Дюралюминий 74 [3]
Железо 180 [5]
Иридий 520 [3]
Кадмий 50 [3]
Кобальт 210 [3]
Константан 163 [3]
Кремний 109 [3]
Латунь 95 [3]
Лёд 3 [3]
Магний 45 [3]
Манганин 124 [3]
Медь 110 [3]
Никель 210 [3]
Ниобий 155 [6]
Олово 35 [3]
Свинец 18 [3]
Серебро 80 [3]
Серый чугун 110 [3]
Сталь 190—210 [3]
Стекло 70 [3]
Титан 112 [3]
Фарфор 59 [3]
Цинк 120 [3]
Хром 300 [3]

См. также править

Примечания править

  1. Главный редактор А. М. Прохоров. Модули упругости // Физический энциклопедический словарь. — М.: Советская энциклопедия. — 1983. — Статьи в Физическом энциклопедическом словаре и Физической энциклопедии.
  2. Паль-Валь Л. Н., Семеренко Ю. А., Паль-Валь П. П., Скибина Л. В., Грикуров Г. Н. Исследование акустических и резистивных свойств перспективных хромо-марганцевых аустенитных сталей в области температур 5—300 К // Конденсированные среды и межфазные границы. — 2008. — Т. 10, вып. 3. — С. 226—235. Архивировано 7 ноября 2017 года.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Анурьев В. И. Справочник конструктора-машиностроителя в 3т. Т. 1/В. И. Анурьев; 8-е изд., перераб и доп. Под ред. И. Н. Жестковой. — М.: Машиностроение, 2001. — С. 34. ISBN 5-217-02963-3
  4. Галашев А. Е., Рахманова О. Р. Устойчивость графена и материалов на его основе при механических и термических воздействиях // Успехи физических наук. — М.: РАН, ФИАН, 2014. — Т. 184, вып. 10. — С. 1051. Архивировано 2 апреля 2016 года.
  5. В.Д. Нацик, П.П. Паль-Валь, Л.Н. Паль-Валь, Ю.А. Семеренко. Низкотемпературный a-пик внутреннего трения в ниобии и его связь с релаксацией кинков на дислокациях // ФНТ. — 2001. — Т. 27, вып. 5. — С. 547—557. Архивировано 7 ноября 2017 года.
  6. П.П. Паль-Валь, В.Д. Нацик, Л.Н. Паль-Валь, Ю.А. Семеренко. Нелинейные акустические эффекты в монокристаллах ниобия, обусловленные дислокациями // ФНТ. — 2004. — Т. 30, вып. 1. — С. 115—125. Архивировано 7 ноября 2017 года.

Литература править

  • Волькенштейн В. С. Сборник задач по общему курсу физики / В. С. Волькенштейн. — СПб.: Лань, 1999. — 328 с.

Ссылки править