Монотонная функция

Моното́нная фу́нкция — функция одной переменной, определённая на некотором подмножестве действительных чисел, которая либо везде (на области своего определения) не убывает, либо везде не возрастает. Более точно, это функция , приращение которой при не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительное[1]. Если в дополнение приращение не равно нулю, то функция называется стро́го моното́нной.

Рисунок 1. Монотонно возрастающая функция. Она строго возрастает слева и справа, а в центре не убывает.
Рисунок 2. Монотонно убывающая функция.
Рисунок 3. Функция, не являющаяся монотонной.

Функция называется возраста́ющей, если большему значению аргумента соответствует не меньшее (по другой терминологии — большее) значение функции. Функция называется убыва́ющей, если большему значению аргумента соответствует не большее (по другой терминологии — меньшее) значение функции.

ОпределенияПравить

Пусть дана функция   Тогда

  • функция   называется возраста́ющей на  , если
 .
  • функция   называется стро́го возраста́ющей на  , если
 .
  • функция   называется убыва́ющей на  , если
 .
  • функция   называется стро́го убыва́ющей на  , если
 .

(Строго) возрастающая или убывающая функция называется (строго) монотонной.

Другая терминологияПравить

Иногда под терминами возрастающая (убывающая) функция подразумевается строго возрастающая (убывающая) функция. Тогда про нестрого возрастающую (убывающую) функцию говорят, неубывающая (невозрастающая)[2]:

  • Функция   называется возрастающей на некотором интервале, если для любых двух точек   и   этого интервала, таких что  , справедливо  . Другими словами, большему значению аргумента соответствует большее значение функции.
  • Функция   называется убывающей на некотором интервале, если для любых двух точек   и   этого интервала, таких что  , справедливо  . Другими словами, большему значению аргумента соответствует меньшее значение функции.
  • Функция   называется неубывающей на некотором интервале, если для любых двух точек   и   этого интервала, таких что  , справедливо  .
  • Функция   называется невозрастающей на некотором интервале, если для любых двух точек   и   этого интервала, таких что  , справедливо  .
  • Возрастающие и убывающие функции называются строго монотонными, неубывающие и невозрастающие функции — монотонными.

Свойства монотонных функцийПравить

Условия монотонности функцииПравить

  • (Критерий монотонности функции, имеющей производную на интервале) Пусть функция   непрерывна на   и имеет в каждой точке   производную   Тогда
      не убывает на   тогда и только тогда, когда  
      не возрастает на   тогда и только тогда, когда  
  • (Достаточное условие строгой монотонности функции, имеющей производную на интервале) Пусть функция   непрерывна на   и имеет в каждой точке   производную   Тогда
    если   то   строго возрастает на  
    если   то   строго убывает на  

Обратное, вообще говоря, неверно. Производная строго монотонной функции может обращаться в ноль. Однако, множество точек, где производная не равна нулю, должно быть плотно на интервале   Точнее имеет место

  • (Критерий строгой монотонности функции, имеющей производную на интервале) Пусть   и всюду на интервале определена производная   Тогда   строго возрастает на интервале   тогда и только тогда, когда выполнены следующие два условия:
  1.  
  2.  

Аналогично,   строго убывает на интервале   тогда и только тогда, когда выполнены следующие два условия:

  1.  
  2.  

ПримерыПравить

  • Функция   строго возрастает на всей числовой прямой, несмотря на то, что точка   является стационарной, т.е. в этой точке  .
  • Функция   является строго возрастающей не только на открытом интервале  , но и на замкнутом интервале  .
  • Экспонента   строго возрастает на всей числовой прямой.
  • Константа   одновременно не возрастает и не убывает на всей числовой прямой.
  • Канторова лестница — пример непрерывной монотонной функции, которая не является константой, но при этом имеет производную равную нулю в почти всех точках.
  • Функция Минковского — пример сингулярной строго возрастающей функции.

Вариации и обобщенияПравить

ПримечанияПравить

  1. Монотонная функция / Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.
  2. В. А. Ильин, В. А. Садовничий, Бл. Х. Сендов. Глава 4. Непрерывность функции // Математический анализ / Под ред. А. Н. Тихонова. — 3-е изд., перераб. и доп. — М.: Проспект, 2006. — Т. 1. — С. 146. — 672 с. — ISBN 5-482-00445-7.
  3. Collins, P. J. (1971). Concordant mappings and the concordant-dissonant factorization of an arbitrary continuous function. Proceedings of the American Mathematical Society, 27(3), 587-591.

См. такжеПравить