Открыть главное меню

Напряжённость магнитного поля

Напряжённость магни́тного по́лявекторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M. Обычно обозначается символом Н.

Напряжённость магнитного поля
Размерность L−1I
Единицы измерения
СИ А/м
СГС Э
Примечания
векторная величина

В Международной системе единиц (СИ):

где  — магнитная постоянная.

В системе СГС:

В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот, намагниченность M зависит линейно от приложенного магнитного поля с индукцией B:

Однако исторически принято эту линейную зависимость описывать не коэффициентом , а использовать связанные величины — магнитную восприимчивость или магнитную проницаемость :

В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.

1 Э = 1000/(4π) А/м ≈ 79,5775 А/м.

1 А/м = 4π/1000 Э ≈ 0,01256637 Э.

Физический смыслПравить

В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля (Н) совпадает с вектором магнитной индукции (B) с точностью до коэффициента, равного 1 в СГС и   в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как, например, в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором магнитной индукции B0 поля, которое было бы создано этой катушкой при отсутствии сердечника. B0 в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B. Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём состоит её ценность: ведь H создает так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля[1]. Энергия магнитного поля как такового выражается только через фундаментальную величину B. Тем не менее видно, что величина H феноменологическая и тут весьма удобна.

ПримечанияПравить

  1. Для иллюстрации раскроем выражение для плотности энергии поля в среде   в случае линейной связи намагниченности от напряженности магнитного поля   В системе СИ где первый член — энергия магнитного поля, второй — энергия взаимодействия поля со средой (например, с магнитными диполями парамагнетика).

ЛитератураПравить

  • Иродов И. Е. Основные законы электромагнетизма. — 2-е, стереотипное. — Москва: Высшая школа, 1991.

СсылкиПравить