Открыть главное меню

Натуральный логарифм 2 в десятичной системе счисления (последовательность A002162 в OEIS) равен приблизительно

как показывает первая строка в таблице ниже. Логарифм числа 2 с другим основанием (b) можно вычислить из соотношения

Десятичный логарифм числа 2 ( A007524) приблизительно равен

Обратное число к данному представляет собой двоичный логарифм 10:

(

A020862).

Число Приближённое значение натурального логарифма OEIS
2 0,693147180559945309417232121458 последовательность A002162 в OEIS
3 1,09861228866810969139524523692 последовательность A002391 в OEIS
4 1,38629436111989061883446424292 последовательность A016627 в OEIS
5 1,60943791243410037460075933323 последовательность A016628 в OEIS
6 1,79175946922805500081247735838 последовательность A016629 в OEIS
7 1,94591014905531330510535274344 последовательность A016630 в OEIS
8 2,07944154167983592825169636437 последовательность A016631 в OEIS
9 2,19722457733621938279049047384 последовательность A016632 в OEIS
10 2,30258509299404568401799145468 последовательность A002392 в OEIS

По теореме Линдемана — Вейерштрасса натуральный логарифм любого натурального числа, отличного от 0 и 1 (в общем случае, для любого положительного алгебраического числа, кроме 1), является трансцендентным числом.

Неизвестно, является ли ln 2 нормальным числом.

Содержание

Представление в виде рядовПравить

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(здесь через γ обозначена постоянная Эйлера — Маскерони, ζ — дзета-функция Римана).

Иногда к данной категории формул относят формулу Бэйли — Боруэйна — Плаффа:

 

Представление в виде интеграловПравить

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Другие формы представления числаПравить

Разложение Пирса имеет вид ( A091846)

 

Разложение Энгеля ( A059180):

 

Разложение в виде котангенсов имеет вид A081785

 

Представление в виде бесконечной суммы дробей[1] (знакопеременный гармонический ряд):

 

Также можно представить натуральный логарифм 2 в виде разложения в ряд Тейлора:

 

Представление в виде обобщённой непрерывной дроби:[2]

 

Вычисление других логарифмовПравить

Если известно значение ln 2, то для вычисления логарифмов других натуральных чисел можно табулировать логарифмы простых чисел, а логарифмы смешанных чисел c затем определять исходя из разложения на простые множители:

 

В таблице представлены логарифмы некоторых простых чисел.

Простое число Приблизительное значение натурального логарифма OEIS
11 2,39789527279837054406194357797 последовательность A016634 в OEIS
13 2,56494935746153673605348744157 последовательность A016636 в OEIS
17 2,83321334405621608024953461787 последовательность A016640 в OEIS
19 2,94443897916644046000902743189 последовательность A016642 в OEIS
23 3,13549421592914969080675283181 последовательность A016646 в OEIS
29 3,36729582998647402718327203236 последовательность A016652 в OEIS
31 3,43398720448514624592916432454 последовательность A016654 в OEIS
37 3,61091791264422444436809567103 последовательность A016660 в OEIS
41 3,71357206670430780386676337304 последовательность A016664 в OEIS
43 3,76120011569356242347284251335 последовательность A016666 в OEIS
47 3,85014760171005858682095066977 последовательность A016670 в OEIS
53 3,97029191355212183414446913903 последовательность A016676 в OEIS
59 4,07753744390571945061605037372 последовательность A016682 в OEIS
61 4,11087386417331124875138910343 последовательность A016684 в OEIS
67 4,20469261939096605967007199636 последовательность A016690 в OEIS
71 4,26267987704131542132945453251 последовательность A016694 в OEIS
73 4,29045944114839112909210885744 последовательность A016696 в OEIS
79 4,36944785246702149417294554148 последовательность A016702 в OEIS
83 4,41884060779659792347547222329 последовательность A016706 в OEIS
89 4,48863636973213983831781554067 последовательность A016712 в OEIS
97 4,57471097850338282211672162170 последовательность A016720 в OEIS

На третьем шаге логарифмы рациональных чисел r = a/b вычисляются как ln r = ln a − ln b, логарифмы корней: ln nc = 1/n ln c.

Логарифм 2 полезен в том смысле, что степени 2 распределены достаточно плотно: определение степени 2i, близкой к степени bj другого числа b сравнительно несложно.

ПримечанияПравить

  1. Wells, David. The Penguin Dictionary of Curious and Interesting Numbers. — Penguin, 1997. — P. 29. — ISBN 0140261494.
  2. Borwein, J.; Crandall, R.; Free, G. (2004). “On the Ramanujan AGM Fraction , I: The Real-Parameter Case” (PDF). Exper. Math. 13 (3): 278—280. DOI:10.1080/10586458.2004.10504540.

ЛитератураПравить

СсылкиПравить