Нитроксильные радикалы

Нитроксильные радикалы — органические радикалы, содержащие нитроксильную группу N-O·. Впервые открыты в 1951 г.[1] Первый синтез соединения 2,2,6,6-тетраметил-4-пиперидон-1-оксил (4-оксо-TEMPO) был выполнен О.Л. Лебедевым в 1959 г.[2]

Классификация и номенклатураПравить

Нитроксильные радикалы являются представителями различных рядов: пиперидина, пирролина, пирролидина, пиперазина, изоиндолина, карболина, азетидина, имидазолина и др.

Один из способов наименования радикалов исходит из названия исходного вещества, к которому добавляется окончание «оксил» с указанием места расположения этой группы (например, 2,2,6,6-тетраметилпиперидин-1-оксил (TEMPO), 3-карбамоил-2,2,5,5-тетраметилпирролидин-1-оксил (PCM), 3-карбокси-2,2,5,5-тетраметилпирролидин-1-оксил (PCA)). Согласно другому способу, за основу принимается нитроксильная группа — к названию заместителей добавляется окончание «нитроксил», например, (C6H5)2NO· - дифенилнитроксил.

Строение нитроксильной связиПравить

Нитроксильная группа содержит трёхэлектронную связь:

 

Неспаренный электрон находится на разрыхляющей π*-орбитали, образованной из 2pz-орбиталей атомов азота и кислорода. Гибридизация связей атома азота близка к sp2. В ди-трет.алкилнитроксилах неспаренный электрон практически равномерно локализован на атомах N и O. При замене алкильного радикала на арильный спиновая плотность на атома азота значительно уменьшается, а на атоме кислорода почти не меняется.

Стабильные нитроксильные радикалыПравить

Нитроксильные радикалы, которые характеризуются наличием стерических затруднений вблизи N-O группы (например, обусловленные третичными атомами углерода), отличаются высокой стабильностью и могут быть выделены в свободном состоянии:

 

Стабильность этих веществ зависит от степени делокализации неспаренного электрона, а также от стерических затруднений в их молекулах. Некоторые нитроксильные радикалы могут храниться годами без разложения.

Стабильные нитроксильные радикалы являются полярными окрашенными веществами, твёрдые или жидкие. Газообразным является только ди-(трифторметил)нитроксил (CF3)2NO·.

Как и все радикалы, нитроксильные радикалы имеют спектр ЭПР. В их спектре наблюдается триплетное расщепление, которое обусловлено сверхтонким взаимодействием неспаренного электрона радикала с ядром атома азота 14N. Константа сверхтонкого расщепления aN меняется от 0,65-1,1 для ацил(трет.бутил)нитроксила до 2,4-2,8 для алкоксиарилнитроксилов. g-Фактор нитроксильных радикалов находится в диапазоне 2,005-2,006.

Синтез нитроксильных радикаловПравить

Окисление гидроксиламиновПравить

Окисление замещённых гидроксиламинов приводит к образованию нитроксильных радикалов:

 

Реакция протекает очень легко - даже при стоянии на воздухе.

Окисление аминовПравить

Это наиболее распространённый способ синтеза, по которому был получен широкий ряд нитроксильных радикалов - производных циклических аминов. Наиболее удобными окислителями являются пероксид водорода в присутствии солей вольфрамовой кислоты и надкислоты:

 

В качестве окислителей можно использовать также органические гидропероксиды, озон

Восстановление нитрозосоединенийПравить

Взаимодействие нитрозо- и нитросоединений с такими восстановителями, как гидроксиламины, тиолы может приводить к нитроксильным радикалам:

 

СвойстваПравить

ДиспропорционированиеПравить

Диспропорционирование нитроксильных радикалов происходит в том случае, если на нитроксильной группе высокая спиновая плотность неспаренного электрона не делокализована на соседних группах. При этом образуются замещённый гидроксиламин и нитрозосоединение:

 

ОкислениеПравить

Окисление нитроксильных радикалов протекает только сильными окислителями (Cl2, SbCl5, SnCl4). Продуктом реакции являются оксоаммониевые соли:

 

Другие реакцииПравить

Помимо реакций по N-O группе нитроксильные радикалы вступают в реакции по другим функциональным группам молекулы, не затрагивающие свободной валентности, что позволяет получать модифицированные нитроксильные радикалы.

ПрименениеПравить

Нитроксильные радикалы могут быть использованы в методе спиновых меток (например, они образуются в реакции 2-метил-2-нитрозопропана со свободным радикалом и имеют время жизни, достаточное для определения aN и g-фактора и идентификации как полученного нитроксильного, так и исходного свободного радикала):

 

ЛитератураПравить

  • Меди — Полимерные// Химическая энциклопедия в 5 томах. — М.: Большая Российская Энциклопедия, 1992. — Т. 3. — 639 с.
  • Розанцев Э.Г., Шолле В.Д. Органическая химия свободных радикалов. — М.: Химия, 1979. — 344 с. — 3200 экз.
  • Нитроксильные радикалы: синтез, химия, приложения / Розанцев Э.Г., Жданов Р.И.. — М.: Наука, 1987. — 271 с. — 800 экз.

СсылкиПравить

  1. A. N. Holden, W. A. Yager and F. R. Merity, J. Chem. Phys., 19, 1319 (1951)
  2. O. L. Lebedev, M. I. Khidekel and G. A. Razuvaev, Doklady Akademii Nauk SSSR, 140, 1327-1329 (1961)

См. такжеПравить