Открыть главное меню

Олимпиадные задачи в математике — термин для обозначения круга задач, для решения которых обязательно требуется неожиданный и оригинальный подход.

Содержание

ОписаниеПравить

Олимпиадные задачи получили своё название от популярных соревнований школьников и студентов, так называемых математических олимпиад. Олимпиадные задачи отличаются от остальных школьных задач нестандартностью решений. Цель создания задач этой категории — воспитание в будущих математиках таких качеств как творческий подход, нетривиальное мышление и умение изучить проблему с разных сторон. Не случайно академик А. Н. Колмогоров в своей речи на открытии сравнил работу математика с «чередой решения (порою больших и трудных) олимпиадных задач».[1]

Внешняя простота олимпиадных задач — их условия и решения должны быть понятны любому школьнику — обманчива. Лучшие олимпиадные задачи затрагивают глубокие проблемы из самых разных областей математики. Иногда этой кажущейся простотой пользовались не по назначению: во времена СССР на приёмных экзаменах в ВУЗы с помощью таких задач отсеивали абитуриентов нежелательных национальностей. Неудивительно, что олимпиадные задачи из арсенала таких приёмных комиссий стали называть «гробами».[2]

Победители математических олимпиад имеют льготы при поступлении во многие ВУЗы [3].

Решение олимпиадных задач может потребовать существенного количества времени даже от сильного (но ненатренированного на их решение) профессионального математика.[4]

Олимпиадные задачи можно найти в Интернете,[5] в периодических изданиях (журналы Квант, Математическое просвещение), а также в виде отдельных сборников. Они широко используются в работе математических кружков, заочных школ[6] и для таких математических соревнований как олимпиады, турниры городов и математические бои.

Большой вклад в популяризацию методов решения олимпиадных задач внесли публикации журнала «Квант», книги серий «Популярные лекции по математике», «Библиотека математического кружка»[7], сборники олимпиадных задач, выпускавшиеся издательствами «Наука», «Просвещение», переводные — издательством «Мир»[8], и другие книги, а также многочисленные веб-сайты, посвящённые олимпиадным задачам.

ПримерыПравить

Задача олимпиадного типа, известная со времён Евклида:

Доказать, что существует бесконечно много простых чисел.

Задача решается методом от противного. Предположив, что простых чисел конечное число N, рассматриваем число, следующее за их произведением  . Очевидно, что оно не делится ни на одно из использованных в произведении простых чисел, давая в остатке 1. Значит, либо оно само простое, либо оно делится на простое число, не учтённое в нашем (предположительно полном) списке. В любом случае, простых чисел, по крайней мере, N+1. Противоречие с предположением о конечности. Q.E.D.

Типы задачПравить

Несмотря на уникальность олимпиадных задач, можно всё-таки выделить несколько типичных идей, составляющих суть задач. Разумеется, по определению, такой список будет неполным.

Методы решенияПравить

Не существует единого метода решения олимпиадных задач. Напротив, количество методов постоянно пополняется. Некоторые задачи можно решить несколькими разными методами или комбинацией методов. Характерная особенность олимпиадных задач в том, что решение с виду несложной проблемы может потребовать применения методов, использующихся в серьёзных математических исследованиях. Ниже приводится (по определению) неполный список методов решения олимпиадных задач:

См. такжеПравить

ПримечанияПравить

  1. Н. Розов, М. Смолянский. XII Всесоюзной Олимпиады школьников по математике // Квант. — 1978. — № 10.
  2. А. Шень. Вступительные экзамены на мехмат = Entrance Examinations to the Mekh-mat // Mathematical Intelligencer. — 1994. — Т. 16. — С. 6-10.
  3. Льготы при поступлении в МФТИ на сайте МФТИ
  4. I. Vardi. Solutions to the year 2000 International Mathematical Olympiad // Preprint IHES/M/00/80. — 2000.
  5. ЗАДАЧИ. Проект МЦНМО при участии школы 57.
  6. ВЗМШ — Всесоюзная Заочная Математическая Школа
  7. Книги серии «Библиотека математического кружка» на сайте МЦНМО
  8. Интернет-библиотека по математике, раздел «Сборники олимпиадных задач»

ЛитератураПравить