Открыть главное меню

Поверхность вращения — поверхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси — цилиндрическая, если скрещивается с осью — гиперболоид. Одна и та же поверхность может быть получена вращением самых разнообразных кривых.

Поверхность, полученная вращением кривой x=2+cos z вокруг оси z

Является объектом изучения в математическом анализе, аналитической и начертательной геометрии.

Содержание

ПримерыПравить

ПлощадьПравить

Площадь поверхности вращения, образованной вращением плоской кривой конечной длины вокруг оси, лежащей в плоскости кривой, но не пересекающей кривую, равна произведению длины кривой на длину окружности с радиусом, равным расстоянию от оси до центра масс кривой. Это утверждение называется второй теоремой Паппа — Гульдина, или теоремой Паппа о центроиде.

Например, для тора с радиусами  , площадь поверхности равна

 .

Площадь поверхности вращения, образованной вращением кривой   вокруг оси   можно вычислить по формуле

 


Площадь поверхности вращения, образованной вращением кривой   вокруг оси   можно вычислить по формуле

 

Для случая, когда кривая задана в полярной системе координат   действительна формула

 

ОбъёмПравить

Объём, ограниченный поверхностью вращения, образованной вращением плоской замкнутой несамопересекающейся кривой вокруг оси, лежащей в плоскости кривой, но не пересекающей кривую, равен произведению площади плоской фигуры, ограниченной кривой, на длину окружности с радиусом, равным расстоянию от оси до центра тяжести плоской фигуры.

Объём поверхности вращения, образованной вращением кривой   вокруг оси   можно вычислить по формуле

 

Вариации и обобщенияПравить

ПримечанияПравить