Полипропилен

Полипропилен (PP) — термопластичный полимер пропилена (пропена).

Полипропилен
Изображение химической структуры
Изображение молекулярной модели
Международный знак вторичной переработки для полипропиленаМеждународный знак вторичной переработки для полипропилена
Общие
Сокращения ПП, PP
Хим. формула (C3H6)n
Физические свойства
Плотность 0,92-0,93 г/см³
Термические свойства
Температура
 • плавления 130–160 °C
Классификация
Рег. номер CAS 9003-07-0
Рег. номер EINECS 618-352-4
RTECS UD1842000
ChEBI 53550
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе

ПолучениеПравить

Полипропилен получают полимеризацией пропилена в присутствии металлокомплексных катализаторов, например, катализаторов Циглера—Натта (например, смесь TiCl4 и AlR3):

nCH2=CH(CH3) → [-CH2-CH(CH3)-]n

Параметры, необходимые для получения полипропилена близки к тем, при которых получают полиэтилен низкого давления. При этом, в зависимости от конкретного катализатора, может получаться любой тип полимера или их смеси.

Полипропилен выпускается в виде порошка белого цвета или гранул с насыпной плотностью 0,4—0,5 г/см³. Полипропилен выпускается стабилизированным, окрашенным и неокрашенным.

Молекулярное строениеПравить

По типу молекулярной структуры можно выделить три основных типа: изотактический, синдиотактический и атактический.

Изотактическая и синдиотактическая молекулярные структуры могут характеризоваться разной степенью совершенства пространственной регулярности.

Стереоизомеры полипропилена существенно различаются по механическим, физическим и химическим свойствам. Атактический полипропилен представляет собой каучукоподобный материал с высокой текучестью, температурой плавления — около 80 °C, плотностью — 850 кг/м³, хорошей растворимостью в диэтиловом эфире. Изотактический полипропилен по своим свойствам выгодно отличается от атактического, а именно: он обладает высоким модулем упругости, большей плотностью — 910 кг/м³, высокой температурой плавления — 165—170 °C и лучшей стойкостью к действию химических реагентов. Стереоблокполимер полипропилена при исследовании с помощью рентгеновских лучей обнаруживает определённую кристалличность, которая не может быть такой же полной, как у чисто изотактических фракций, поскольку атактические участки вызывают нарушение в кристаллической решётке. Изотактический и синдиотактический образуются случайным образом;

Физико-механические свойстваПравить

В отличие от полиэтилена, полипропилен менее плотный (плотность 0,91 г/см³, что является наименьшим значением вообще для всех пластмасс), более твёрдый (стоек к истиранию), более термостойкий (начинает размягчаться при 140 °C, температура плавления 175 °C), почти не подвергается коррозионному растрескиванию. Обладает высокой чувствительностью к свету и кислороду (чувствительность понижается при введении стабилизаторов).

Поведение полипропилена при растяжении ещё в большей степени, чем полиэтилена, зависит от скорости приложения нагрузки и от температуры. Чем ниже скорость растяжения полипропилена, тем выше значение показателей механических свойств. При высоких скоростях растяжения разрушающее напряжение при растяжении полипропилена значительно ниже его предела текучести при растяжении.

Показатели основных физико-механических свойств полипропилена приведены в таблице:

Плотность, г/см³ 0,90—0,91
Разрушающее напряжение при растяжении, кгс/см 250—400
Относительное удлинение при разрыве, % 200—800
Модуль упругости при изгибе, кгс/см 6700—11900
Предел текучести при растяжении, кгс/см 250—350
Относительно удлинение при пределе текучести, % 10—20
Ударная вязкость с надрезом, кгс·см/см² 33—80
Твердость по Бринеллю, кгс/мм² 6,0—6,5

Физико-механические свойства полипропилена разных марок приведены в таблице:

Показатели / марка 01П10/002 02П10/003 03П10/005 04П10/010 05П10/020 06П10/040 07П10/080 08П10/080 09П10/200
Насыпная плотность, кг/л, не менее 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47 0,47
Показатель текучести расплава, г/10 мин ≤0 0,2—0,4 0,4—0,7 0,7—1,2 1,2—3,5 3—6 5—15 5—15 15—25
Относительное удлинение при разрыве, %, не менее 600 500 400 300 300 - - - -
Предел текучести при разрыве, кгс/см, не менее 260 280 270 260 260 - - - -
Стойкость к растрескиванию, ч, не менее 400 400 400 400 400 - - - -
Характеристическая вязкость в декалине при 135 °C, 100 мл/г - - - - - 2,0—2,4 1,5—2,0 1,5—2,0 0,5—15
Содержание изотактической фракции, не менее - - - - - 95 93 95 93
Содержание атактической фракции, не более - - - - - 1,0 1,0 1,0 1,0
Морозостойкость, °C, не ниже -5 -5 -5 - - - - - -

Химические свойстваПравить

Полипропилен — химически стойкий материал. Заметное воздействие на него оказывают только сильные окислители — хлорсульфоновая кислота, дымящая азотная кислота, галогены, олеум. Концентрированная 58%-я серная кислота и 30%-й пероксид водорода при комнатной температуре действуют незначительно. Продолжительный контакт с этими реагентами при 60 °C и выше приводит к деструкции полипропилена.

В органических растворителях полипропилен при комнатной температуре незначительно набухает. Выше 100 °C он растворяется в ароматических углеводородах, таких, как бензол, толуол. Данные о стойкости полипропилена к воздействию некоторых химических реагентов приведены в таблице.

Среда Температура, °C Изменение массы, % Примечание
Продолжительность выдержки образца в среде реагента 7 суток
Азотная кислота, 50%-я 70 -0,1 Образец растрескивается
Натр едкий, 40%-й 70 Незначительное
90
Соляная кислота, конц. 70 +0,3
90 +0,5
Продолжительность выдержки образца в среде реагента 30 суток
Азотная кислота, 94%-я 20 -0,2 Образец хрупкий
Ацетон 20 +2,0
Бензин 20 +13,2
Бензол 20 +12,5
Едкий натр, 40%-й 20 Незначительное
Минеральное масло 20 +0,3
Оливковое масло 20 +0,1
Серная кислота, 80%-я 20 Незначительное Слабое окрашивание
Серная кислота, 98%-я 20 >>
Соляная кислота, конц. 20 +0,2
Трансформаторное масло 20 +0,2

Вследствие наличия третичных углеродных атомов полипропилен более чувствителен к действию кислорода, особенно при воздействии ультрафиолета и повышенных температурах. Этим и объясняется значительно большая склонность полипропилена к старению по сравнению с полиэтиленом. Старение полипропилена протекает с более высокими скоростями и сопровождается резким ухудшением его механических свойств. Поэтому полипропилен применяется только в стабилизированном виде. Стабилизаторы предохраняют полипропилен от разрушения как в процессе переработки, так и во время эксплуатации. Полипропилен меньше, чем полиэтилен подвержен растрескиванию под воздействием агрессивных сред. Он успешно выдерживает стандартные испытания на растрескивание под напряжением, проводимые в самых разнообразных средах. Стойкость к растрескиванию в 20%-м водном растворе эмульгатора ОП-7 при 50 °C для полипропилена с показателем текучести расплава 0,5—2,0 г/10 мин, находящегося в напряжённом состоянии, более 2000 ч.

Полипропилен — водостойкий материал. Даже после длительного контакта с водой в течение 6 месяцев (при комнатной температуре) водопоглощение полипропилена составляет менее 0,5 %, а при 60 °C — менее 2 %.

Теплофизические свойстваПравить

Полипропилен имеет более высокую температуру плавления, чем полиэтилен, и соответственно более высокую температуру разложения. Чистый изотактический полипропилен плавится при 176 °C. Максимальная температура эксплуатации полипропилена 120—140 ºC. Все изделия из полипропилена выдерживают кипячение, и могут подвергаться стерилизации паром без какого-либо изменения их формы или механических свойств.

Превосходя полиэтилен по теплостойкости, полипропилен уступает ему по морозостойкости. Его температура хрупкости (морозостойкости) колеблется от −5 до −15 ºC. Морозостойкость можно повысить введением в макромолекулу изотактического полипропилена звеньев этилена (например, при сополимеризации пропилена с этиленом).

Показатели основных теплофизических свойств полипропилена приведены в таблице:

Температура плавления, °C 160—170
Теплостойкость по методу НИИПП, °C 160
Удельная теплоёмкость (от 20 до 70ºС), кал/(г·°C) 0,46
Термический коэффициент линейного расширения (от 20 до 100 °C), 1/°C 1,1⋅10−4
Температура хрупкости, °C От −5 до −15

Электрические свойстваПравить

Показатели электрических свойств полипропилена приведены в таблице:

Удельное объёмное электрическое сопротивление, Ом·см 1016—1017
Диэлектрическая проницаемость при 106 Гц 2,2
Тангенс угла диэлектрических потерь при 106 Гц 2⋅10−4—5⋅10−5
Электрическая прочность (толщина образца 1 мм), кВ/мм 30—40

ПереработкаПравить

Основные способы переработки — формование методами экструзии, вакуум- и пневмоформования, экструзионно-выдувного, инжекционно-выдувного, инжекционного, компрессионного формования, литьё под давлением.

ПрименениеПравить

Материал для производства плёнок (особенно упаковочных), мешков, тары, труб, деталей технической аппаратуры, пластиковых стаканчиков, предметов домашнего обихода, нетканых материалов, электроизоляционный материал, в строительстве для вибро- и шумоизоляции межэтажных перекрытий в системах «плавающий пол». При сополимеризации пропилена с этиленом получают некристаллизующиеся сополимеры, которые проявляют свойства каучука, отличающиеся повышенной химической стойкостью и сопротивлением старению.

Для вибро- и теплоизоляции также широко применяется пенополипропилен (ППП). Близок по характеристикам к вспененному полиэтилену (пенополиэтилен). Также встречаются декоративные экструзионные профили из ППП, заменяющие пенополистирол. Атактический полипропилен используют для изготовления строительных клеев, замазок, уплотняющих мастик, дорожных покрытий и липких плёнок.

Структура применения полипропилена в России в 2012 году была следующей: 38 % — тара, 30 % — нити, волокна, 18 % — плёнки, 6 % — трубы, 5 % — полипропиленовые листы, 3 % — прочее[1].

Рынок полипропиленаПравить

Полипропилен занимает второе место в мире среди полимеров по объёму потребления, с долей 26 % уступая только полиэтилену. Доля занимающего третью позицию поливинилхлорида (18 %) сокращается в пользу полипропилена. 76 % мирового потребления полипропилена приходится на гомополипропилен, остальное на сополимеры[2]. В России потребление полипропилена выросло с 250 тыс. т в 2002 году до 880 тыс. т в 2012 году[1], при этом остаётся на довольно низком уровне: 1,6 % от мирового[3] или 6 кг на человека в год против 18 кг/чел. в Западной Европе, 17 кг/чел. в США и 12 кг/чел. в Китае[2].

В мире наблюдается перепроизводство полипропилена: сейчас переизбыток оценивается в размере 7,4 млн тонн в год[1], в 2015 году при ожидаемом объёме мирового потребления 66 млн т производственные мощности составят 79 млн т[3].

5 крупнейших производителей полипропилена в мире (на 2011 год)[4]
№№ п/п Компания Страна Производственные мощности, тыс. тонн Доля мирового рынка, %
1 LyondellBasell Нидерланды 6 471 11,24
2 Sinopec Китай 4 930 6,37
3 SABIC Саудовская Аравия 3 455 5,13
4 PetroChina Китай 3 038 4,69
5 Braskem Бразилия 2 814 4,60

Российское производство полипропилена началось в 1981 году на Томском нефтехимическом комбинате (ныне принадлежит «Сибуру»). В 1990-е годы установки по производству полипропилена были построены на Московском НПЗГазпром нефть» и «Сибур») и «Уфаоргсинтезе» («Башнефть»). В 2007 году производство полипропилена открылось на будённовском СтавроленеЛукойл»), а в 2013 году на омском Полиоме[2].

Крупнейшее российское производство полипропилена открылось 15 октября 2013 года — это принадлежащий «Сибуру» завод «Тобольск-Полимер»[1][2]. В момент запуска тобольского завода он входил в пятёрку самых мощных в мире (ещё два завода имели такую же мощность)[2][5]. Предприятие рассчитано на производство 510 тыс. т пропилена в год методом дегидрирования пропана (подрядчик — Maire Tecnimont, оборудование — UOP, получаемого на Тобольском нефтехимическом комбинате, и последующее производство из него 500 тыс. т полипропилена в год (подрядчик — Linde, оборудование — Ineos[1][4]. Мощности прочих российских заводов по выпуску полипропилена не превышают 250 тыс. т в год[2]. «Тобольск-Полимер» специализируется на выпуске гомополипропилена, в то время как производство сополимеров «Сибур» решил сосредоточить на Томском НХК и Московском НПЗ[4].

В 2015 году в России было произведено 1275 тыс. тонн полипропилена, при этом экспорт составил 350 тыс. тонн.[6][7]

См. такжеПравить

ПримечанияПравить

  1. 1 2 3 4 5 Пыжьянова В. Полипропиленовыми шапками закидаем // Эксперт-Урал : журнал. — Екатеринбург, 21 октября 2013. — № 42 (575). Архивировано 3 января 2014 года.
  2. 1 2 3 4 5 6 Море пластика из Тобольска // Эксперт : журнал. — М., 21 октября 2013. — № 42 (872).
  3. 1 2 Серова Т. Спрос на полипропилен в мире растёт во всех отраслях применения. Plastinfo.ru. Дата обращения: 3 января 2014.
  4. 1 2 3 Виньков А. Предтеча пиролизной печи // Эксперт : журнал. — М., 5 ноября 2012. — № 44 (826).
  5. Сиваков Д., Виньков А. Не заставляйте нас производить пластиковые тазики // Эксперт : журнал. — М., 20 сентября 2010. — № 37 (721).
  6. В 2015 году экспорт полипропилена из России вырос на 59%. www.mrcplast.ru. Дата обращения: 13 апреля 2016.
  7. В 2015 году выпуск полипропилена в России вырос на 23%. www.mrcplast.ru. Дата обращения: 13 апреля 2016.

ЛитератураПравить

  • Перепёлкин В. П. Полипропилен, его свойства и методы переработки. — Л.: ЛДНТП, 1963. — 256 c.
  • Кренцель Б. А., Л. Г. Сидорова. Полипропилен. — Киев.: Техника, 1964. — 89 с.
  • Коллектив авторов (И. Амрож и т. д.). Полипропилен. Перевод со словацкого В. А. Егорова. Под ред. В. И. Пилиповского и И. К. Ярцева. — Л.: Химия, 1967. — 316 c.
  • Иванюков Д. В., М. Л. Фридман. Полипропилен. — М.: Химия, 1974. — 270 с.
  • Handbook of Polypropylene and Polypropylene Composites / ed. H.G. Karian. — NewYork.: MarcelDekker Inc, 2003. — 740 p.
  • Polypropylene. An A to Z reference / ed. J. Karger-Kocsis. Kluwer, 1999. — 987 p.
  • ГОСТ 26996-86 «Полипропилен и сополимеры пропилена».