Проблема остановки

Проблема остановки (или проблема останова) — это одна из проблем в теории алгоритмов[1], которая может неформально быть поставлена в виде:

Даны описание процедуры и её начальные входные данные. Требуется определить: завершится ли когда-либо выполнение процедуры с этими данными; либо, что процедура всё время будет работать без остановки.

Алан Тьюринг доказал в 1936 году, что проблема остановки неразрешима на машине Тьюринга. Другими словами, не существует общего алгоритма решения этой проблемы.[2]

Проблема остановки занимает центральное место в теории вычислимости, поскольку представляет собой первый пример задачи, которую невозможно решить алгоритмическим путём. Для многих других задач можно доказать их алгоритмическую неразрешимость, попытавшись свести задачу к проблеме остановки. Это делается по следующей схеме: пусть есть некая задача, для которой требуется установить её неразрешимость. Тогда предположим, что она разрешима, и попытаемся, используя этот факт, написать алгоритм решения проблемы остановки. Если это удастся, то мы придем к противоречию, ведь известно, что не существует такого алгоритма. А значит, предположение было неверным и исходная задача также неразрешима.

ДоказательствоПравить

Рассмотрим множество   алгоритмов, которые принимают на вход натуральное число и на выходе тоже выдают натуральное число. Выберем какой-нибудь полный по Тьюрингу язык программирования. Каждый алгоритм можно записать в виде конечной последовательности символов на этом языке. Упорядочим множество   (это возможно, поскольку оно является множеством конечных последовательностей элементов конечного множества и потому счётно), при этом каждый алгоритм получит свой порядковый номер. Назовем Анализатором гипотетический алгоритм, который получает на вход пару натуральных чисел  , и:

  • останавливается и возвращает 1, если алгоритм с номером   не останавливается, получив на вход  
  • не останавливается в противном случае (если алгоритм с номером   останавливается, получив на вход  ).

Проблему остановки можно переформулировать следующим образом: существует ли Анализатор?

Теорема. Анализатор не существует.

Докажем это от противного. Допустим, Анализатор существует. Напишем алгоритм Диагонализатор, который принимает на вход число  , передает пару аргументов   Анализатору и возвращает результат его работы. Другими словами, Диагонализатор останавливается в том и только том случае, если не останавливается алгоритм с номером  , получив на вход число  . Пусть   — это порядковый номер Диагонализатора в множестве  . Запустим Диагонализатор, передав ему это число  . Диагонализатор остановится в том и только том случае, если алгоритм с номером   (то есть, он сам) не останавливается, получив на вход число   (какое мы ему и передали). Из этого противоречия следует, что наше предположение неверно: Анализатор не существует, что и требовалось доказать.

См. такжеПравить

  • Граф потока управления может быть использован для быстрой категоризации, когда программа не имеет циклов (и поэтому останавливается), имеет тривиальные циклы (и поэтому останавливается), имеет нетривиальные циклы (неразрешимо) или входит в бесконечный цикл.

ПримечанияПравить

  1. Н.К.Верещагин, А.Шень Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции
  2. Turing A. On Computable Numbers, with an Application to the Entscheidungsproblem (англ.) // Proceedings of the London Mathematical SocietyLondon Mathematical Society, 1937. — Vol. s2-42, Iss. 1. — P. 230—265. — ISSN 0024-6115; 1460-244Xdoi:10.1112/PLMS/S2-42.1.230 (в этой публикации Тьюринг вводит определение машины Тьюринга, формулирует проблему зависания и показывает, что она, также как и проблема разрешения, неразрешима).

СсылкиПравить