Открыть главное меню
Красный треугольник является серединным треугольником для чёрного. Вершины красного треугольника лежат в серединах сторон чёрного.

Серединный треугольник (дополнительный треугольник) — треугольник, построенный на серединах сторон данного треугольника, частный случай серединного многоугольника для многоугольника с сторонами для .

Содержание

СвойстваПравить

Серединный треугольник можно рассматривать как образ исходного треугольника   при гомотетии с центром в центроиде с множителем −½. Таким образом, серединный треугольник подобен исходному и имеет тот же самый центроид и медианы, что и исходный треугольник  . Отсюда также следует, что периметр серединного треугольника равен полупериметру треугольника   и что его площадь равна четверти площади треугольника  . Более того, четыре треугольника, на которые разбивается исходный треугольник серединным треугольником, равны по трём сторонам, так что их площади равны и составляют четверть площади исходного треугольника[1]. В этой связи иногда «серединными» называют сразу все четыре равных между собой внутренних треугольника, получаемых из заданного треугольника проведением в нём трёх средних линий (в наиболее традиционной терминологии серединным называют только один из них — центральный).

Ортоцентр серединного треугольника совпадает с центром описанной окружности данного треугольника  , этот факт даёт средства для доказательства того, что центр описанной окружности, центроид и ортоцентр лежат на одной прямой — прямой Эйлера.

Серединный треугольник является подерным треугольником центра описанной окружности. Окружность девяти точек является описанной для серединного треугольника, а потому центр девяти точек является центром описанной вокруг серединного треугольника окружности Точка Нагеля серединного треугольника является центром вписанной окружности исходного треугольника[2].

Серединный треугольник равен треугольнику, вершинами которого служат середины отрезков, соединяющих ортоцентр и его вершины (треугольник Эйлера)[3].

Центр вписанной окружности треугольника лежит в серединном треугольнике[4]. Точка внутри треугольника является центром вписанного в треугольник эллипса[en] тогда и только тогда, когда эта точка лежит внутри серединного треугольника[5]. Серединный треугольник является единственным вписанным треугольником, для которого никакой из трёх остальных треугольников не имеет площадь, меньшую площади этого треугольника[6]. Центр окружности, вписанной в серединный треугольник данного треугольника  , является центром масс периметра треугольника (центром Шпикера), этот центр является центром тяжести однородной проволочной фигуры, соответствующей треугольнику.

КоординатыПравить

Пусть   — длины сторон треугольника  . Трилинейные координаты вершин серединного треугольника задаются формулами:

  •  
  •  
  •  

Антисерединный треугольникПравить

Если   — серединный треугольник для  , то   является антисерединным треугольником (антидополнительным) для  . Антикомплементарный треугольник для   образуется тремя прямыми, параллельными сторонам   — параллельно   через точку  , параллельно   через точку   и параллельно   через точку  .

Трилинейные координаты вершин антисерединного треугольника   задаются формулами:

  •  
  •  
  •  

ПримечанияПравить

  1. Posamentier, Lehmann, 2012, с. 177.
  2. Altshiller-Court, 2007, с. 161, Теорема 337.
  3. Altshiller-Court, 2007, с. 103,#206;108,#1.
  4. Franzsen, 2011, с. 233, Лемма 1.
  5. Chakerian, 1979, с. 139, Глава 7.
  6. Torrejon, 2005, с. 137.

ЛитератураПравить

  • Alfred S. Posamentier, Ingmar Lehmann. The Secrets of Triangles. — Prometheus Books, 2012.
  • William N. Franzsen. The distance from the incenter to the Euler line // Forum Geometricorum. — 2011. — Вып. 11.
  • Nathan Altshiller-Court. College Geometry. — Dover Publications, 2007.
  • G. D. Chakerian. Mathematical Plums / R. Honsberger. — Washington, DC: Mathematical Association of America,, 1979.
  • Ricardo M. Torrejon. On an Erdos inscribed triangle inequality // Forum Geometricorum. — 2005. — Вып. 5.
  • Зетель С. И. Новая геометрия треугольника. Пособие для учителей. 2-е издание.. — М.: Учпедгиз, 1962. — 153 с.

СсылкиПравить