Серная лампа

Се́рная ла́мпа — источник света квазисолнечного спектра.

Серная лампа

Высокоэффективная лампа с широким спектром излучения, генерируемого серой, находящейся в состоянии плазмы.

Принцип действияПравить

Микроволновое излучение нагревает серу в атмосфере инертного газа аргона. Плазма серы излучает мощный свет со спектром, близким к спектру солнечного света, почти без инфракрасной и ультрафиолетовой составляющих. Спектр излучения серной лампы представляет собой сочетание атомарного и молекулярного спектров серы. Пропорция их зависит от интенсивности СВЧ поля накачки. Также в спектре присутствуют в небольшом количестве линии атомарного инертного газа.

Использование безэлектродного разряда, как источника оптического излучения в принципиальном плане предполагает наличие таких обязательных элементов как: собственно лампа с колбой той или иной конфигурации, генератор электромагнитных колебаний и электродинамическая система, транспортирующая эту СВЧ-энергию к лампе и формирующая в зоне локализации лампы определенную стационарную или динамически изменяющуюся топографию СВЧ-электромагнитного поля. К этому «набору» обязательных элементов следует добавить некий формирователь диаграммы направленности полученного оптического излучения.

Менять цветовую температуру в некоторых пределах можно, меняя давление паров серы в колбе. Так, повышение давления с 4.4 до 12.1 Бар повышает длину волны максимума излучения с 470 до 570 нм, что соответствует снижению цветовой температуры с 6100 до 5100 К. Однако, доля видимого излучения при этом снижается более чем полтора раза: с 68% до примерно 41%[1].

ИсторияПравить

В 70-е годы XX столетия в США на фирме Fusion System Corp. (FSC) были созданы и использованы в технологическом процессе УФ-сушки излучатели на основе безэлектродных СВЧ-разрядных ламп, главным образом с аргонно-ртутным наполнением. Излучатели работали с СВЧ-накачкой на частотах 915 и 2450 МГц.

В начале 90-х годов американские инженеры, экспериментируя с составами рабочего вещества-наполнителя лампы, обнаружили, что замена ртути в колбе безэлектродной лампы серой позволяет получить весьма интенсивное квазисолнечное излучение. Это послужило отправным пунктом для создания в 1992 году первых световых СВЧ-приборов на основе серных ламп с СВЧ-накачкой на частоте 2450 МГц [2]. А в октябре 1994 года в Вашингтоне уже были продемонстрированы две мощные осветительные системы с использованием весьма выигрышного сочетания СВЧ-источника света на серной лампе и полого «призматического» световода.

В 2000—2005 годах в России были изготовлены несколько экспериментальных образцов СВЧ-прожекторов, которые практически подтвердили ожидаемые высокие характеристики.

В 2006 году LG Electronics начала производство осветителей на основе серных ламп. Линейка этих светильников получила название плазменные осветительные системы Plasma Lighting System (PLS).

Технические характеристикиПравить

Основные технические характеристики некоторых серных ламп:

SOLAR 1000TM PSF1032A PSF1831A
Мощность, Вт 1375 1000 1850
Световой поток, клм 130 91 186
Световая отдача, лм/Вт 94,5 91 101
Индекс цветопередачи 79 76 79
Цветовая температура 5900 5500
Срок службы > 15 000 часов* 100 000

Срок службы серной безэлектродной лампы определяется ресурсом блока питания (преобразователя переменного тока в постоянный) и электромотора охлаждающей системы. Для ламп первой волны он составлял примерно 10–15 тысяч часов. Ресурс же колбы гораздо выше, т.к. сера практически не реагирует с кварцем, даже при температуре 1000 °C[2]. По некоторым оценкам срок службы колбы может достигать 60 тысяч часов[3], LG заявляет срок службы своих плазменных прожекторов в 100 тыс. часов.

Серная лампа и фотосинтезПравить

Серная лампа, в силу особенностей своего спектра, оказалась прекрасным источником света для фотосинтеза растений и, соответственно, для использования в оранжерейном освещении. Компания Fusion Lighting по заказу NASA провела исследование, с целью увеличить излучение лампы на длинах волн в районе 625 нм, где квантовая эффективность фотосинтеза близка к единице. Оказалось, что добавление в колбу бромида кальция создает пик излучения вблизи 625 нм. При этом наблюдается лишь небольшое снижение интенсивности излучения в области малых длин волн, доля же инфракрасного излучения остается практически неизменной[2].

ПреимуществаПравить

На практике основную экспансию совершают с СВЧ-накачкой порядка 800—1000 Вт, и световым потоком примерно до 130 кЛм. Эти системы относительно просты конструктивно, не требуют принудительного обдува горелки, позволяют использовать обычные серийные магнетроны, применяемые в бытовых СВЧ-печах.

Суммируя известные сегодня данные, можно выделить основные достоинства СВЧ-световых приборов с безэлектродными лампами, к которым относятся

  • Повышенная до 100 лм/Вт световая отдача[4] (световая отдача непосредственно колбы составляет 150 лм/Вт, но около трети мощности теряется в трансформаторе, магнетроне, на работу вентиляторов и т.д.)[2]
  • Сплошной квазисолнечный спектр оптического излучения с резко пониженным уровнем излучений в УФ и ИК[5][6] диапазонах и с максимумом спектра, совпадающим с максимумом кривой видности человеческого глаза. Это естественная цветопередача.[5][4]
  • Отсутствие мерцания источника света.
  • Малогабаритность и равнояркость светящего тела, облегчающая оптимизацию оптических систем.
  • Высокая долговечность лампы (десятки тысяч часов).
  • Экологическая чистота материалов наполнения лампы: серы и аргона.
  • Возможность регулировки силы света.
  • Возможность модульного ремонта в блочных конструкциях крупных ламп.

НедостаткиПравить

  • Сложность конструкции[4]
  • Высокая стоимость лампового модуля[4]
  • Высокая температура колбы горелки, отсюда необходимость использования высококачественного кварцевого стекла и защиты от пыли.
  • Большой диаметр светящегося тела (25-30 мм), усложняющий фокусировку и использование в оптических системах.
  • Инертность (лампа достигает 80% номинальной светимости через 20-25 с, а после выключения может быть включена только через 5-15 минут).
  • Высокий уровень акустического шума из-за необходимости интенсивного обдува колбы.
  • Трудности в подавлении просачивающегося в окружающую среду микроволнового излучения.

ПримечанияПравить

  1. Серная лампа. Многообещающее начало и… непрогнозируемое будущее? Часть II. Немного о физике серного разряда
  2. 1 2 3 Серная лампа. Многообещающее начало и… непрогнозируемое будущее? Часть III. Технические характеристики ламп и системы светораспределения
  3. Эволюция лампы
  4. 1 2 3 4 http://www.belsut.gomel.by/ellibrary/1/29.pdf (недоступная ссылка) «В установившемся режиме СВЧ-разряд высокого давления в парах серы имеет сплошной спектр оптического излучения, близкий к солнечному. … высокие энергоэффективные свойства (световая отдача до 100 лм/Вт);2) практически естественная цветопередача, обусловленная сплошным квазисолнечным спектром с резко пониженным уровнем излучений в УФ и ИК диапазонах и с максимумом в диапазоне видимого излучения;»
  5. 1 2 http://www.mephi.ru/upload/main/news/Shchukin.pdf Архивная копия от 19 июля 2014 на Wayback Machine «… достоинства СВЧ-источников света на основе серы: повышенная световая отдача (~100 лм/Вт), обеспечивающая возможность энергосбережения; сплошной квазисолнечный спектр, максимум спектральной плотности мощности которого практически совпадает с максимумом кривой чувствительности человеческого глаза, то естьестественная цветопередача; генерация в инфракрасной области низка (<1 %)»
  6. Поскольку излучение не тепловое, а обусловлено взаимодействием молекул серы с электронами аргоновой плазмы.