Тригонометрические функции
Тригонометри́ческие фу́нкции — элементарные функции[1], которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла дуги в круге). Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.
Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.
К тригонометрическим функциям традиционно причисляют:
- прямые тригонометрические функции:
- синус ();
- косинус ();
- производные тригонометрические функции:
- тангенс ;
- котангенс ;
- секанс ;
- косеканс ;
- арксинус, арккосинус и т. д.
В типографике литературы на разных языках сокращённое обозначение тригонометрических функций различно, например, в англоязычной литературе тангенс, котангенс и косеканс обозначаются , , . До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах[2], но потом в литературе на языках этих стран был принят англоязычный вариант записи тригонометрических функций.
Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).
Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках , а у котангенса и косеканса — в точках .
Графики тригонометрических функций показаны на рис. 1.
Способы определенияПравить
Определение для острых угловПравить
В геометрии тригонометрические функции острого угла определяются отношениями сторон прямоугольного треугольника[3]. Пусть — прямоугольный, с острым углом и гипотенузой . Тогда:
- (синусом угла называется отношение противолежащего катета к гипотенузе);
- (косинусом угла называется отношение прилежащего катета к гипотенузе);
- (тангенсом угла называется отношение противолежащего катета к прилежащему);
- (котангенсом угла называется отношение прилежащего катета к противолежащему);
- (секансом угла называется отношение гипотенузы к прилежащему катету);
- (косекансом угла называется отношение гипотенузы к противолежащему катету).
Данное определение имеет некоторое методическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач о тупоугольных треугольниках. (См.: теорема синусов, теорема косинусов).
Определение для любых угловПравить
Обычно тригонометрические функции определяются геометрически[4]. В декартовой системе координат на плоскости построим окружность единичного радиуса ( ) с центром в начале координат . Всякий угол станем рассматривать как поворот от положительного направления оси абсцисс до некоторого луча (точку выбираем на окружности), при этом направление поворота против часовой стрелки считаем положительным, а по часовой стрелке — отрицательным. Абсциссу точки обозначим , а ординату — (см. рисунок 2).
Численные значения тригонометрических функций угла в тригонометрической окружности с радиусом, равным единице
Определим функции следующим образом:
- , ;
- , ;
- , .
Нетрудно видеть, что такое определение так же основывается на отношениях прямоугольного треугольника, с тем отличием, что учитывается знак ( ). Поэтому тригонометрические функции можно определить и по окружности произвольного радиуса , однако формулы придётся нормировать. На рисунке 3 показаны величины тригонометрических функций для единичной окружности.
В тригонометрии удобным оказывается вести счёт углов не в градусной мере, а в радианной. Так, угол в запишется длиной единичной окружности . Угол в равен, соответственно и так далее. Заметим, что угол на отличающийся от по рисунку эквивалентен , вследствие чего заключим, что тригонометрические функции периодичны.
Наконец, определим тригонометрические функции вещественного числа тригонометрическими функциями угла, радианная мера которого равна .
Определение как решений дифференциальных уравненийПравить
Синус и косинус можно определить как единственные функции, вторые производные которых равны самим функциям, взятым со знаком минус:
То есть задать их как чётное (косинус) и нечётное (синус) решения дифференциального уравнения
с дополнительными условиями: для косинуса и для синуса.
Определение как решений функциональных уравненийПравить
Функции косинус и синус можно определить[5] как решения ( и соответственно) системы функциональных уравнений:
при дополнительных условиях:
и при .
Определение через рядыПравить
Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу, и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде степенны́х рядов:
Пользуясь этими формулами, а также равенствами и можно найти разложения в ряд и других тригонометрических функций:
где
- — числа Бернулли,
- — числа Эйлера.
Значения тригонометрических функций для некоторых угловПравить
Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. (« » означает, что функция в указанной точке не определена, а в её окрестности стремится к бесконечности).
Радианы | ||||||||
---|---|---|---|---|---|---|---|---|
Градусы | ||||||||
Значения тригонометрических функций нестандартных угловПравить
Радианы | |||||||||
---|---|---|---|---|---|---|---|---|---|
Градусы | |||||||||
Радианы | ||||||||
---|---|---|---|---|---|---|---|---|
Градусы | ||||||||
Свойства тригонометрических функцийПравить
Простейшие тождестваПравить
Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то, согласно уравнению единичной окружности ( ) или теореме Пифагора, имеем:
Это соотношение называется основным тригонометрическим тождеством.
Разделив это уравнение на квадрат косинуса и синуса соответственно, получим:
Из определения тангенса и котангенса следует, что
Любую тригонометрическую функцию можно выразить через любую другую тригонометрическую функцию с тем же аргументом (с точностью до знака из-за неоднозначности раскрытия квадратного корня). Нижеприведённые формулы верны для :
sin | cos | tg | ctg | sec | cosec | |
---|---|---|---|---|---|---|
НепрерывностьПравить
- Синус и косинус — непрерывные функции.
- Тангенс и секанс имеют точки разрыва , где — любое целое.
- Котангенс и косеканс имеют точки разрыва , где — любое целое.
ЧётностьПравить
Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:
ПериодичностьПравить
Функции — периодические с периодом , функции и — c периодом .
Формулы приведенияПравить
Формулами приведения называются формулы следующего вида:
Здесь — любая тригонометрическая функция, — соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса, тангенс для котангенса, котангенс для тангенса, секанс для косеканса и косеканс для секанса), — целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол острый, например:
- или что то же самое:
Некоторые формулы приведения:
Интересующие формулы приведения так же могут легко быть получены рассмотрением функций на единичной окружности.
Формулы сложения и вычитанияПравить
Значения тригонометрических функций суммы и разности двух углов:
Аналогичные формулы для суммы трёх углов:
Формулы для кратных угловПравить
Формулы двойного угла:
Формулы тройного угла:
Прочие формулы для кратных углов:
- следует из формулы дополнения и формулы Гаусса для гамма-функции.
Из формулы Муавра можно получить следующие общие выражения для кратных углов:
где — целая часть числа , — биномиальный коэффициент.
Формулы половинного угла:
ПроизведенияПравить
Формулы для произведений функций двух углов:
Аналогичные формулы для произведений синусов и косинусов трёх углов:
Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.
СтепениПравить
СуммыПравить
Существует представление:
где угол находится из соотношений:
Универсальная тригонометрическая подстановкаПравить
Все тригонометрические функции можно выразить через тангенс половинного угла: