Двойственное пространство: различия между версиями

→‎Свойства: уточнение
(→‎Определение: стилевые правки)
(→‎Свойства: уточнение)
* Каждому базису <math>e^1, \ldots, e^n</math> пространства <math>E</math> можно поставить в соответствие так называемый ''двойственный'' (или ''взаимный'') базис'' <math>e_1, \ldots, e_n</math> пространства <math>E^*</math>, где функционал <math>e_i</math> — проектор на вектор <math>e^i</math>:
: <math>e_i(x) = e_i(\alpha_1e^1 + \ldots + \alpha_ne^n) = \alpha_i, \quad\forall x\in E.</math>
* Если пространство <math>E</math> [[евклидово пространство|евклидово]], то есть на нём определено [[скалярное произведение]], то между <math>E</math> и <math>E^*</math> существует так называемый ''канонический изоморфизм'' (то есть изоморфизм, не зависящий от выбранных базисов), определённый соотношением
: <math>v \in E \mapsto f \in E^*, \quad f(x) = \langle x, v \rangle, \ \forall x\in E.</math>
* Второе сопряжённое пространство <math>E^{**}</math> изоморфно <math>E</math>. Более того, существует ''канонический изоморфизм'' между <math>E</math> и <math>E^{**}</math> (при этом не предполагается, что пространство <math>E</math> евклидово), определённый соотношением
Анонимный участник