Устойчивость (динамические системы): различия между версиями

м
Нет описания правки
м
м
 
При любых <math>(t_0, x_0) \in I \times \Omega</math> существует единственное решение ''x(t, t<sub>0</sub>, x<sub>0</sub>)'' системы (1), удовлетворяющее начальным условиям ''x(t<sub>0</sub>, t<sub>0</sub>, x<sub>0</sub>) = x<sub>0</sub>.'' Будем предполагать, что решение ''x(t, t<sub>0</sub>, x<sub>0</sub>)'' определено на интервале <math>J^+ = [t_0; \infty)</math>, причём <math>J^+ \subset I</math>.
[[Файл:Bellman-richard-545.jpg|мини|[[Беллман, Ричард]] - разработчик численных методов теории устойчивости]]
== Устойчивость по Ляпунову ==
Тривиальное решение ''x = 0'' системы (1) называется устойчивым по [[Ляпунов, Александр Михайлович|Ляпунов]]у, если для любых <math>t_0 \in I</math> и <math>\varepsilon > 0</math> существует <math>\delta > 0</math>, зависящее только от ''&epsilon;'' и ''t<sub>0</sub>'' и не зависящее от ''t'', такое, что для всякого ''x<sub>0</sub>'', для которого <math>\|x_0\| < \delta</math>, решение ''x'' системы с начальными условиями x(t<sub>0</sub>) = x<sub>0</sub> продолжается на всю полуось t > t<sub>0</sub> и удовлетворяет неравенству <math>\|x(t)\| < \varepsilon</math>.
 
<math>(\forall \varepsilon > 0)(\forall t_0 \in I)(\exists \delta(t_0, \varepsilon) > 0)(\forall x_0 \in B_{\delta(t_0, \varepsilon)})(\forall t \ge t_0, t \in J^+) \Rightarrow (\|x(t, t_0, x_0)\| < \varepsilon)</math>
[[Файл:111listen.nyq.jpg|мини|[[Найквист, Гарри]] - разработалразработчик критерийкритерия найквиста]]
== Равномерная устойчивость по Ляпунову ==
Тривиальное решение ''x = 0'' системы (1) называется равномерно устойчивым по Ляпунову, если &delta; из предыдущего определения зависит только от &epsilon;: