Живучесть: различия между версиями

[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Нет описания правки
Строка 12:
В [1] предлагается разграничение сфер ответственности надежности и живучести в зависимости от состояния системы. Так «…подход к формализации состояний систем в теории живучести существенно отличается от принятого в теории надежности. На множестве отказовых, с точки зрения надежности, состояний системы могут быть выделены состояния, допускающие решение системой поставленной задачи с заданной эффективностью (см. табл. 1). Что применительно к металлическим конструкциям оправдывает допущение при повреждении пластических деформаций близких к предельным. Существенной особенностью исследований живучести систем является их вынужденная априорность. Нерасчетные условия, возникающие в аварийных ситуациях, крайне редки и их опыт может быть распространен весьма ограниченно. Проведение специальных испытаний в натуре или просто невозможно, или крайне дорого».
Под отказоустойчивостью (стойкостью) понимается проявление свойства живучести в нормальном режиме эксплуатации. Так, в нормах для проектирования АЭС существует понятие «проектной» аварии, на которую в том числе должны быть рассчитаны конструкции. Существует мнение, что следует изучать природу аварийных воздействий. Определив, а впоследствии «занормировав» величину последних, можно запроектировать конструкцию с «ключевыми» элементами. При этом подразумевается, что отказ «ключевого» элемента, рассчитанного на аварийное воздействие, невозможен. Но это выводит нас за рамки проблемы живучести, и вызывает необходимость определения параметров аварийного воздействия, что является крайне сложной и неопределимой задачей.
Модели живучести могут быть стохастические, в рамках современной математической теории надежности, или детерминированные, в рамках механики катастроф. Вероятностную модель, описывающую живучесть системы называют «нагрузка-прочность» («нагрузка – несущая способность», прочностная модель). Под действием внешней нагрузки «прочность» системы постепенно уменьшается до тех пор, пока система не выйдет из строя. Внешние нагрузки описываются случайной величиной (функцией). При анализе живучести широко используется аппарат теории графов, позволяющий оценить топологию системы, и как следствие, взаимное влияние элементов друг на друга. Детерминистическая модель живучести системы лежит в основе механики катастроф, в рамках которой исследуются процессы накопления повреждений, достижения предельного (критического) состояния, реакции элементов конструкций на внешние воздействия и т.д. Особое место в механике катастроф занимает изучение процесса закритического поведения элементов конструкций (систем). Когда в своей закритической области они выходят из строя и оказывают влияние на другие элементы системы, порождая внутренние для самой конструкции негативные воздействия. Внешние и внутренние воздействия приводят к последовательности отказов элементов системы, инициирующих ее переход в аварийное состояние (ЧС). Детерминированные модели, чаще всего логические, незаменимы там, где нужна однозначность, в оценке живучести системы на уровне «да» или «нет». Важный и ответственный этап в формировании теоретических основ любого свойства - выбор его показателей и критериев. Так, нарушение функционирования систем возможно при нарушении связности их структур. Система не может выполнять свои функции без взаимодействия между всеми или, по крайней мере, жизненно важными элементами. Комплексным “показателем живучести” для дискретной системы (стержневой конструкции) служит минимальное число элементов системы (реберная связность) или узлов (вершинная связность), выход из строя которых под влиянием внешних воздействий приводит к нарушению функционирования системы. Для коммуникационной сети (графа) (см. рис. 3) без резервного соединения реберная связность равна 2, вершинная – 1. При использовании резервного соединения реберная связность возрастает до 3, а вершинная остается равной 1. Показатели живучести для континуальных систем (например, мембранные конструкции, монолитные ж.б. конструкции с континуальными элементами в виде стен и плит) в настоящее время в науке пока не сформулированы, при их разработке возникают затруднения – так в континуальной системе нельзя четко выделить (обосновать) область отказа. В общем случае тестовыми повреждениями для континуальной конструкции могут выступать – разрез, отверстие в некоторой области. Возможно, для такого обоснования необходим аппарат теории риска, который позволит связать вероятность величины повреждающего воздействия и ущерб, к которому может привести воздействие.
 
==См. также==