Рациональная функция: различия между версиями

немного причесал
(тупое копирование из Рациональная дробь)
(немного причесал)
'''Рациональная дробь[[Функция (математика)|функция]]''' — это дробь, [[числитель|числителем]] и [[знаменатель|знаменателем]] которой являются [[многочлен]]ы. Она имеет вид
[[Функция (математика)|Функция]] называется рациональной, если она может быть представлена в виде дроби:
 
:: <math>\frac{P_n(x_1,\dots,x_n)}{Q_m(x_1,\dots,x_m)}</math>
 
где &nbsp;<math>P_n(x_1,\dots,x_n)</math>, &nbsp;<math>Q_m(x_1,\dots,x_m)</math> — [[многочлен]]ы от любого числа переменных.
 
Частным случаем являются рациональные функции одного переменного:
Такая функция определена во всех точках, кроме тех, в которых знаменатель &nbsp; <math>Q_m(x_1,\dots,x_m)</math> &nbsp; обращается в ноль.
: <math>R(x) = \frac{P(x)}{Q(x)}</math>, где P(x) и Q(x) — многочлены.
 
<!-- Такая функция определена во всех точках, кроме тех, в которых знаменатель &nbsp; <math>Q_m(x_1,\dots,x_m)</math> &nbsp; обращается в ноль. Иногда она может быть не определена нигде (см. fr-wiki) -->
'''Рациональная дробь''' — это дробь, [[числитель|числителем]] и [[знаменатель|знаменателем]] которой являются [[многочлен]]ы. Она имеет вид
 
Другим частным случаем является отношение двух [[Линейная функция|линейных функций]] — [[дробно-линейная функция]].
<math>R(x) = \frac{P(x)}{Q(x)}</math>
 
== Свойства ==
где P(x) и Q(x) некоторые многочлены.
* Любое выражение, которое можно получить из переменных <math>x_1,\dots,x_n</math> с помощью четырёх арифметических действий, является рациональной функцией.
* Множество рациональных функций замкнуто относительно арифметических действий и операции [[Композиция функций|композиции]].
* Любая рациональная функция может быть представлена в виде суммы простейших дробей (см. [[Метод неопределённых коэффициентов]]), это [[Методы интегрирования|применяется при аналитическом интегрировании]].
 
== Правильные дроби ==
Различают правильные и неправильные рациональные дроби, по аналогии с обычными [[Дробь (математика)|числовыми дробями]]. Рациональная дробь называется правильной, если порядок знаменателя больше порядка числителя, и неправильной, если наоборот.
 
Любую неправильную рациональную дробь можно преобразовать в сумму некоторого многочлена и правильной рациональной дроби
 
== См. также ==
* [[Рациональное число]]
* [[Наипростейшая дробь]]
* [[Рациональное число]]
* [[Египетские дроби]]
* [[Рациональная функция]]
 
== Свойства ==
* Любое выражение, которое можно получить из переменных <math>x_1,\dots,x_n</math> с помощью четырёх арифметических действий, является рациональной функцией.
* Множество рациональных функций замкнуто относительно арифметических действий и операции [[Композиция функций|композиции]].
* Любая рациональная функция может быть представлена в виде суммы простейших дробей (см. [[Метод неопределённых коэффициентов]]), это [[Методы интегрирования|применяется при аналитическом интегрировании]].
 
== См. также ==
* [[Рациональное число]]
* [[Дробно-линейная функция]]
* [[Список интегралов от рациональных функций]]