Синхротрон: различия между версиями

1290 байт добавлено ,  10 лет назад
Нет описания правки
Синхротрон представляет собой электровакуумную установку с приблизительно кольцевой вакуумной камерой, в которой частицы ускоряются до скорости, близкой к [[скорость света|скорости света]], а стоящие на их пути мощные постоянные магниты изменяют направление их движения. В вакуумной камере постоянно поддерживается глубокий вакуум (порядка <math>10^{-9}</math> [[Торр]] и глубже), чтобы избежать быстрого поглощения ускоренных частиц. Так как постройка сплошного постоянного магнита по всему периметру кольца технически дорога, то вакуумную камеру синхротрона строят в виде многоугольника, с поворачивающими магнитами в углах.
Синхротрон действует по резонансному принципу уcкорения, то есть пролетающие частицы попадают в ускоряющее поле всегда в резонанс с изменением поля.
 
.
==Поколения синхротронов==
Синхротроны, а точнее источники синхротронного излучения, условно делят на четыре поколения:<ref>{{Citation |title=Синхротронное излучение |first=Г.В. |last=Фетисов |publisher=ФизМатЛит |location=Москва |year=2007 }}.</ref>
# Первое поколение - синхротроны, построенные как ядерно-физические установки, где [[синхротронное излучение]] было вредным, "паразитным" излучением, не позволяющим далее увеличивать энергию ускоряемых частиц. На этих установках впервые начали отрабатываться методики использования [[синхротронное излучение|синхротронного излучения]];
# Второе поколение - синхротроны, специально построенные для генерации синхротронного излучения. В основном использовали для генерации излучения поворотные магниты. Энергетически это невыгодно, т.к. те же самые магниты используются для управления траекторией, и генерируемое излучение в итоге выходит не только на [[Экспериментальная станция источника синхротронного излучения|экспериментальные станции источника СИ]], а равномерно распределено в пространстве;
# Третье поколение - начали проектировать в начале 1990-х годов. При проектировании синхротронов 3-го поколения в их конструкции предусматривалось большое число длинных (5 и более метров) прямолинейных промежутков, предназначенных для установки вставных устройств - [[Вигглер|вигглеров]] и [[Ондулятор|ондуляторов]]. Использование для генерации излучения специализированных устройств гораздо более энергоэффективно - большая часть излучаемой электронами энергии выводится непосредственно на [[Экспериментальная станция источника синхротронного излучения|экспериментальные станции]], при этом снятие магнитного поля с неиспользуемых в отдельные моменты времени вставных устройств позволяет также существенно уменьшить энергопотребление экспериментальной установки. Следует указать, что мощность потерь энергии электронами на одном вставном устройстве может превышать 300 кВт.
# четвёртоеЧетвёртое поколение источников синхротронного излучения - уже не являются более синхротронами. Технология развития накопительных колец достигла совершенства в источниках третьего поколения, и дальнейшее совершенствование накопителей - а именно повышение плотности электронов, повышение яркости источника [[Синхротронное излучение|СИ]] уже физически невозможно. Критическим параметром стал эммитанс - фактически, [[фазовый объем]], занимаемый электронами при движении по орбите. При этом оказывается, что если даже в начальный момент инжекции электроны имели очень маленький эммитанс, в процессе многократного (миллиарды раз) прохождения по орбите, они "забывают" о своем начальном состоянии, и эммитанс пучка далее определяется как несовершенством магнитной структуры ускорителя, так и межчастичными взаимодействиями. Для уменьшения эммитанса (и т.о. повышения яркости) предлагаются источники на базе [[Лазер на свободных электронах|лазеров на свободных электронах]], а также линейных ускорителей с рекуперацией энергии - [[MARS]].
 
==Top-Up режим==
*Сибирский центр синхротронного излучения- ускорители [[ВЭПП-3]], [[ВЭПП-4]] - используются в т.ч. в качестве источников СИ.
 
==Крупнейшие европейские источники СИ==
* [[ESRF]]
* [[ALBA]]
* [[Soleil]]
* [[Elletra]]
* [[Diamond]]