Кратность критической точки: различия между версиями

Нет описания правки
 
{{рамка}}
Пусть <math>f: \R^n\to\R</math> — <math>C^{\infty}</math>-гладкая функция от <math>n</math> переменных <math>x_1, \ldots, x_n</math>, имеющая <math>O\in\R^n</math> своей критической точкой. Соответствующее '''градиентное отображение''' <math>\nabla f: \R^n\to\R^n</math> задается формулой <math>(x_1, \ldots, x_n) \mapsto (\partial f/\partial x_1, \ldots, \partial f/\partial x_n).</math> Введем следующие обозначения:
* <math>\R[[x_1, \ldots, x_n]]</math> — [[Алгебра над кольцом|алгебра]] [[Степенной ряд|формальных степенных рядов]] от переменных <math>x_1, \ldots, x_n</math> с центром в <math>O.</math>
* <math>I_{\nabla f} = (\partial f/\partial x_1, \ldots, \partial f/\partial x_n)</math> — [[Идеал (алгебра)|идеал]] в алгебре гладких функций, порожденный образующими <math>\partial f/\partial x_1, \ldots, \partial f/\partial x_n.</math>
 
{{рамка}}
Пусть <math>f: \R^n\to\R^n</math> — <math>C^{\infty}</math>-гладкое отображение, имеющее <math>O\in\R^n</math> своей критической точкой. Отображение <math>\,f</math> задается набором <math>n</math> гладких функций <math>f_1, \ldots, f_n</math> от <math>n</math> переменных <math>x_1, \ldots, x_n</math>.
<math>f_1, \ldots, f_n</math> от <math>n</math> переменных <math>x_1, \ldots, x_n</math>.
 
Введем следующие обозначения: