Метод Феррари: различия между версиями

1 байт добавлено ,  11 лет назад
{{Формула|<math>y^3-b y^2+(ac-4d)y-a^2 d+4 b d-c^2=0 \,</math>|(2)}}
([[Резольвента алгебраического уравнения|резольвенты]] основного уравнения), то четыре корня исходного уравнения находятся как корни двух квадратных уравнений
: <math>x^2+\frac{a}{2}x+\frac{y_1}{2}=\pm\sqrt{\left(\frac{a^2}{4}-b+y_1\right)x^2+\left(\frac{a}{2}y_1-c\right)x+\frac{y^2_1}{4}-d},</math>
где подкоренное выражение в правой части является полным квадратом. Отметим, что [[дискриминант]]ы исходного уравнения (1) четвёртой степени и уравнения (2) совпадают.
 
Анонимный участник