Постоянная Эйлера — Маскерони: различия между версиями

* <math>{\gamma + \zeta(2) = \sum_{k=2}^\infty\left(\frac1{\lfloor \sqrt{k} \rfloor^2} - \frac1{k}\right) = \sum_{k=2}^{\infty} \frac{k - \lfloor\sqrt{k}\rfloor^2}{k\lfloor\sqrt{k}\rfloor^2} = \frac12 + \frac23 + \frac1{2^2} \sum_{k=1}^{2 \times 2} \frac k {k+2^2} + \frac1{3^2} \sum_{k=1}^{3 \times 2} \frac k {k+3^2} + \dots.}</math>
* <math>2\gamma = \lim\limits_{z\to 0} \frac1{z}\left\{\frac1{\Gamma(1+z)} - \frac1{\Gamma(1-z)} \right\}</math>
* <math> \frac{\pi^2}{3\gamma^2} = \lim_{z\to 0} \frac1{z}\left\{\frac1{\Psi(1-z)} - \frac1{\Psi(1+z)} \right\}.</math>
* <math> \gamma = \ln\pi - 4\ln\Gamma(\tfrac34) + \frac4{\pi}\sum_{k=1}^{\infty}(-1)^{k+1}\frac{\ln(2k+1)}{2k+1}.</math>