Вавилонская математика: различия между версиями

оформление, уточнение
м (Перемещение 14 интервики-ссылок в Викиданные (d:Q787931))
(оформление, уточнение)
 
[[Файл:Ybc7289-bw.jpg|right|thumb|300px|<center>Вавилонская табличка (около 1800–1600 г. до н. э.) с вычислением <math>\sqrt{2} \approx 1 + 24/60 + 51/60^2 + 10/60^3</math><br /> = 1.41421296…</center>]]
== Общие сведения ==
[[Вавилония|Вавилонское царство]] возникло в начале II тысячелетия до н. э. на территории современного [[Ирак]]а, придя на смену [[Шумер]]у и [[Аккад]]у и унаследовав их развитую культуру. Просуществовало до персидского завоевания в 539 году до н. э.
 
Как и в [[Математика в Древнем Египте|египетских текстах]], излагается только [[алгоритм]] решения (на конкретных примерах), без комментариев и доказательств. Однако анализ алгоритмов показывает, что общая математическая теория у вавилонян несомненно была.
== Нумерация ==
[[Файл:Babylonian numerals.jpg|right|thumb|300px|[[Вавилонские цифры|Вавилонские 60-ричные цифры]]]]
Шумеры и вавилоняне использовали [[Шестидесятеричная система счисления|60-ричную позиционную систему счисления]], увековеченную в нашем делении [[круг]]а на 360°, часа на 60 минут и минуты на 60 секунд. Писали они, как и мы, слева направо. Однако запись необходимых 60 цифр была своеобразной. Значков для цифр было всего два, обозначим их Е (единицы) и Д (десятки); позже появился значок для нуля. Цифры от 1 до 9 изображались как Е, ЕЕ, … ЕЕЕЕЕЕЕЕЕ. Далее шли Д, ДЕ, … ДДДДДЕЕЕЕЕЕЕЕЕ (59). Таким образом, число изображалось в позиционной 60-ричной системе, а его 60-ричные цифры — в аддитивной десятичной. Аналогично записывались дроби. Для популярных дробей 1/2, 1/3 и 2/3 были специальные значки.
Расшифровывается эта запись следующим образом: 4 &times; 3600 + 2 &times; 60 + 10 + 46/60 + 52/3600
 
== Арифметика ==
Для умножения применялся громоздкий комплект таблиц, отдельно для умножения на 1-20, 30…50. Деление m/n они заменяли умножением m &times;(1/n), а для нахождения 1/n у них были специальные таблицы. Другие таблицы помогали возводить в степень, извлекать корни и даже находить показатель степени ''n'', если дано число вида <math>2^n</math> (эти двоичные [[логарифм]]ы использовались для подсчёта процентов по кредиту){{sfn |История математики|1970|с=39 }}. Без многопудовой библиотеки таблиц никакие расчёты в Вавилоне были невозможны.
 
Для вычисления квадратных корней вавилоняне изобрелиоткрыли быстро сходящийся [[Итерационная формула Герона|итерационный процесс:]] — новое приближение для <math>\sqrt{a}</math> получалось из предыдущего по формуле [[Метод Ньютона|метода Ньютона]]{{sfn |История математики|1970|с=47 }}:
:: <math>a_x_{n+1} = \frac{1}{2}~(a_nx_n + N/a_n\frac{a}{x_n})/2\ </math>
 
== Геометрия ==
В геометрии рассматривались те же фигуры, что и в [[Математика в Древнем Египте|Египте]], плюс сегмент [[круг]]а и усечённый [[конус]]. В ранних документах полагают <math>\pi=3</math>; позже встречается приближение 25/8 = 3,125. Встречается также и необычное правило: [[площадь]] [[круг]]а есть 1/12 от квадрата длины окружности, то есть <math>\pi^2 R^2/3</math>. Впервые появляется (ещё при [[Хаммурапи]]) [[теорема Пифагора]], причём в общем виде; она снабжалась особыми таблицами и широко применялась при решении разных задач. Вавилоняне умели вычислять [[площадь|площади]] [[Правильный многоугольник|правильных многоугольников]]; видимо, им был знаком принцип подобия. Для площади неправильных четырёхугольников использовалась та же приближённая формула, что и в [[Математика в Древнем Египте|Египте]]: <math>S=\frac{{a+c}}{2} \cdot \frac {b+d}{2}</math>.