Постоянная Эйлера — Маскерони: различия между версиями

Нет изменений в размере ,  7 лет назад
Нет описания правки
*: <math>\gamma = -\Gamma^'(1) = -\Psi(1)</math>.
* До сих пор не выявлено, является ли это число [[Рациональное число|рациональным]]. Однако теория [[цепная дробь|цепных дробей]] показывает, что если постоянная Эйлера — рациональная дробь, её знаменатель больше <math>10^{242080}</math>{{нет АИ|23|01|2012}}
*: <math>\begin{align} \gamma &= \frac{3}{2}- \ln 2 - \sum_{m=2}^\infty (-1)^m\,\frac{m-1}{m} [\zeta(m)-1] \\
&= \lim_{n \to \infty} \left [ \frac{2\,n-1}{2\,n} - \ln\,n + \sum_{k=2}^n \left ( \frac{1}{k} - \frac{\zeta(1-k)}{n^k} \right ) \right ] \\
&= \lim_{n \to \infty} \left [ \frac{2^n}{e^{2^n}} \sum_{m=0}^\infty \frac{2^{m \,n}}{(m+1)!} \sum_{t=0}^m \frac{1}{t+1} - n\, \ln 2+ O \left ( \frac{1}{2^n\,e^{2^n}} \right ) \right ].\end{align} </math>
Анонимный участник