Газовые гидраты: различия между версиями

[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
м оформление, орфография, пунктуация
Строка 51:
 
== Научные исследования ==
В последние годы интерес к проблеме газовых гидратов во всем мире значительно усилился. Рост активности исследований объясняется следующими основными факторами:
 
В последние годы интерес к проблеме газовых гидратов во всем мире значительно усилился.
Рост активности исследований объясняется следующими основными факторами:
* активизацией поисков альтернативных источников углеводородного сырья в странах, не обладающих ресурсами энергоносителей, так как газовые гидраты являются нетрадиционным источником углеводородного сырья, опытно-промышленное освоение, которого может начаться в ближайшие годы;
* необходимостью оценки роли газовых гидратов в приповерхностных слоях геосферы, особенно в связи с их возможным влиянием на глобальные климатические изменения;
Строка 64 ⟶ 62 :
 
В 2002—2004 гг. исследования по нетрадиционным источникам углеводородов, включая газовые гидраты (с учетом коммерческих интересов [[ОАО «Газпром»]]), продолжались в [[ВНИИГАЗ|ООО «Газпром ВНИИГАЗ»]] и [[Промгаз|ОАО «Промгаз»]] при небольшом масштабе финансирования.
 
В настоящее время{{когда?}} исследования по газовым гидратам проводятся в [[ОАО «Газпром»]] (главным образом, в [[ООО «Газпром ВНИИГАЗ»]]), в институтах Российской академии наук, в университетах.
 
Исследования геологических и технологических проблем газовых гидратов были начаты в середине 60-х годов специалистами ВНИИГАЗа. Вначале ставились и решались технологические вопросы предупреждения гидратообразования, затем тематика постепенно расширялась: включались в сферу интересов кинетические аспекты гидратообразования, далее значительное внимание было уделено геологическим аспектам, в частности возможностям существования газогидратных залежей, теоретическим проблемам их освоения.
Строка 73 ⟶ 72 :
Прежде всего, были разработаны графоаналитические методы выделения термодинамических зон стабильности газогидратов в земной коре (ЗСГ). При этом выяснилось, что зона стабильности гидратов (ЗСГ) метана, наиболее распространенного в земной коре углеводородного газа, покрывает до 20 % суши (в районах распространения криолитозоны) и до 90 % дна океанов и морей.
 
Эти сугубо теоретические результаты активизировали поиски гидратосодержащих пород в природе: первые успешные результаты были получены сотрудниками ВНИИГАЗа А. Г. Ефремовой и Б. П. Жижченко при донном пробоотборе в глубоководной части [[Чёрное море|Чёрного моря]] в 1972 году. Они визуально наблюдали вкрапления гидратов, похожие на иней в кавернах извлеченного со дна грунта. Фактически, это первое, официально признанное в мире наблюдение природных газовых гидратов в породах. Данные А. Г. Ефремовой и Б. П. Жижченко впоследствии многократно цитировались зарубежными и отечественными авторами. На основе их исследований в США были разработаны первые методы отбора образцов субмаринных газогидратов. Позже А. Г. Ефремова, работая в экспедиции по донному пробоотбору в [[Каспийское море|Каспийском море]] (1980 г.), также впервые в мире установила гидратоносность донных отложений этого моря, что позволило при более поздних детализированных исследованиях другим ученым (Г. Д. Гинсбург, В. А. Соловьев и др.) выделить в Южном Каспии гидратоносную провинцию (связанную с грязевулканизмом).
Данные А. Г. Ефремовой и Б. П. Жижченко впоследствии многократно цитировались зарубежными и отечественными авторами. На основе их исследований в США были разработаны первые методы отбора образцов субмаринных газогидратов. Позже А. Г. Ефремова, работая в экспедиции по донному пробоотбору в [[Каспийское море|Каспийском море]] (1980 г.), также впервые в мире установила гидратоносность донных отложений этого моря, что позволило при более поздних детализированных исследованиях другим ученым (Г. Д. Гинсбург, В. А. Соловьев и др.) выделить в Южном Каспии гидратоносную провинцию (связанную с грязевулканизмом).
 
Большой вклад в геологические и геофизические исследования гидратосодержащих пород внесли сотрудники Норильской комплексной лаборатории ВНИИГАЗа М. Х. Сапир, А. Э. Беньяминович и др., изучавшие Мессояхское газовое месторождение, начальные пластовые Р, Т-условия которого практически совпадали с условиями гидратообразования метана. Этими исследователями в начале 70-х годов были заложены принципы распознавания гидратосодержащих пород по данным комплексного скважинного каротажа.
Строка 82 ⟶ 80 :
 
Также была проведена важная работа Е. В. Захарова и С. Г. Юдина (1984 г.) по перспективам поиска гидратосодержащих отложений в Охотском море. Эта публикация оказалась прогностической: через два года после её опубликования появилась целая серия статей об обнаружении гидратосодержащих отложений при сейсмопрофилировании, донном пробоотборе, и даже при визуальном наблюдении с подводных обитаемых аппаратов в различных частях Охотского моря.
К настоящему времени ресурсы гидратного газа России только в обнаруженных субмаринных скоплениях оцениваются в несколько трлн.триллионов м³.
Несмотря на прекращение финансирования исследований по природным газогидратам в 1988 году, работы во ВНИИГАЗе были продолжены В. С. Якушевым, В. А. Истоминым, В. И. Ермаковым и В. А. Скоробогатовым на безбюджетной основе (исследования природных газогидратов не включались в официальную тематику института вплоть до 1998 года).
Особую роль в организации и постановке исследований сыграл профессор В. И. Ермаков, который постоянно уделял внимание последним достижениям в области природных газогидратов и поддерживал эти исследования во ВНИИГАЗе на протяжении всей своей работы в институте.
Строка 104 ⟶ 102 :
 
=== Экспериментальные и теоретические исследования свойств газовых гидратов ===
 
В 60-70-тые годы основное внимание уделялось условиям образования газовых гидратов из бинарных и многокомпонентных смесей, в том числе и в присутствии [[ингибитор]]ов гидратообразования.
 
Строка 122 ⟶ 119 :
 
== Проблемы и перспективы, связанные с природными газогидратами ==
 
Освоение месторождений севера Западной Сибири с самого начала столкнулось с проблемой выбросов газа из неглубоких интервалов криолитозоны. Эти выбросы происходили внезапно и приводили к остановке работ на скважинах и даже к пожарам. Так как выбросы происходили из интервала глубин выше зоны стабильности газогидратов, то длительное время они объяснялись перетоками газа из более глубоких продуктивных горизонтов по проницаемым зонам и соседним скважинам с некачественным креплением. В конце 80-х годов на основе экспериментального моделирования и лабораторных исследований мерзлого керна из криолитозоны Ямбургского ГКМ удалось выявить распространение рассеянных реликтовых (законсервировавшихся) гидратов в четвертичных отложениях. Эти гидраты совместно с локальными скоплениями микробиального газа могут сформировать газоносные пропластки, откуда происходят выбросы при бурении. Присутствие реликтовых гидратов в неглубоких слоях криолитозоны было в дальнейшем подтверждено аналогичными исследованиями на севере Канады и в районе Бованенковского ГКМ. Таким образом, сформировались представления о новом типе газовых залежей — внутримерзлотных метастабильных газ-газогидратных залежах, которые, как показали испытания мерзлотных скважин на Бованенковском ГКМ, представляют собой не только осложняющий фактор, но и определённую ресурсную базу для местного газоснабжения.
 
Строка 141 ⟶ 137 :
 
== Перспективы применения в промышленности газогидратных технологий ==
Технологические предложения по хранению и транспорту природного газа в гидратном состоянии появились ещё в 40-х годах 20-огоXX века. Свойство газовых гидратов при относительно небольших давлениях концентрировать значительные объёмы газа привлекает внимание специалистов длительное время. Предварительные экономические расчеты показали, что наиболее эффективным оказывается морской транспорт газа в гидратном состоянии, причем дополнительный экономический эффект может быть достигнут при одновременной реализации потребителям транспортируемого газа и чистой воды, остающейся после разложения гидрата (при образовании газогидратов вода очищается от примесей). В настоящее время рассматриваются концепции морского транспорта природного газа в гидратном состоянии при равновесных условиях, особенно при планировании разработки глубоководных газовых (в том числе и гидратных) месторождений, удаленных от потребителя.
 
Технологические предложения по хранению и транспорту природного газа в гидратном состоянии появились ещё в 40-х годах 20-ого века. Свойство газовых гидратов при относительно небольших давлениях концентрировать значительные объёмы газа привлекает внимание специалистов длительное время. Предварительные экономические расчеты показали, что наиболее эффективным оказывается морской транспорт газа в гидратном состоянии, причем дополнительный экономический эффект может быть достигнут при одновременной реализации потребителям транспортируемого газа и чистой воды, остающейся после разложения гидрата (при образовании газогидратов вода очищается от примесей). В настоящее время рассматриваются концепции морского транспорта природного газа в гидратном состоянии при равновесных условиях, особенно при планировании разработки глубоководных газовых (в том числе и гидратных) месторождений, удаленных от потребителя.
 
Однако в последние годы все большее внимание уделяется транспорту гидратов в неравновесных условиях (при атмосферном давлении).
Ещё одним аспектом применения газогидратных технологий является возможность организации газогидратных хранилищ газа в равновесных условиях (под давлением) вблизи крупных потребителей газа. Это связано со способностью гидратов концентрировать газ при относительно низком давлении. Так, например, при температуре +4°С и давлении 40 атм., концентрация метана в гидрате соответствует давлению в 15 — 1615—16 МПа (150—160 атм.).
 
Сооружение подобного хранилища не является сложным: хранилище представляет собой батарею газгольдеров, размещенных в котловане или ангаре, и соединённую с газовой трубой. В весенне-летний период хранилище заполняется газом, формирующим гидраты, в осенне-зимний — отдает газ при разложении гидратов с использованием низкопотенциального источника теплоты. Строительство подобных хранилищ вблизи теплоэнергоцентралей может существенно сгладить сезонную неравномерность в производстве газа и представлять собой реальную альтернативу строительству ПХГ в ряде случаев.
 
В настоящее время активно разрабатываются газогидратные технологии, в частности, для получения гидратов с использованием современных методов интенсификации технологических процессов (добавки ПАВ, ускоряющие тепломасопереностепломассоперенос; использование гидрофобных нанопорошков; акустические воздействия различного диапазона, вплоть до получения гидратов в ударных волнах и др.).
 
== Применение газовых гидратов ==