Компактификация: различия между версиями

Нет изменений в размере ,  14 лет назад
Нет описания правки
На компактификациях некоторого фиксированного пространства <math>X</math> можно ввести частичный порядок. Положим <math>f_1 \leq f_2</math> для двух компактификаций <math>f_1: X \to Y_1</math>, <math>f_2: X \to Y_2</math>, если существует непрерывное отображение <math>g: Y_2 \to Y_1</math> такое, что <math>g f_2 = f_1</math>. Максимальный (с точностью до [[гомеоморфизм|гомеоморфизма]]) элемент в этом порядке называется '''компактификацией Стоуна-Чеха''' и обозначается <math>\beta X</math>. Для того, чтобы у пространства <math>X</math> существовала компактификация Стоуна-Чеха, удовлетворяющая [[аксиомы отделимости|аксиоме отделимости]] Хаусдорфа, достаточно, чтобы <math>X</math> удовлетворяло аксиоме отделимости <math>T_{3\frac{1}{2}}</math>.
 
'''Одноточечная компактификация''' (или '''компактификация Александрова''') устроена следующим образом. Пусть <math>Y=X \cup \{\infty\}</math> и открытыми множествами в <math>Y</math> считаются все открытые множества <math>X</math>, а также множества вида <math>O \cup \{\infty\}</math>, где <math>O \subseteq X</math> имеет компактное (в <math>X</math>) дополнение. <math>f</math> берётся как естественное вложение <math>X</math> в <math>Y</math>. <math>(Y, f)</math> тогда компактификация, причём <math>Y</math> хаусдорфово тогда и только тогда, когда <math>X</math> [[хаусдорфово|Хаусдорфово пространство|хаусдорфово]] и [[локально компактное пространство|локально компактно]].
 
[[Категория:Общая топология]]