Компактификация: различия между версиями

нет описания правки
Нет описания правки
Нет описания правки
 
'''Одноточечная компактификация''' (или '''компактификация Александрова''') устроена следующим образом. Пусть <math>Y=X \cup \{\infty\}</math> и открытыми множествами в <math>Y</math> считаются все открытые множества <math>X</math>, а также множества вида <math>O \cup \{\infty\}</math>, где <math>O \subseteq X</math> имеет компактное (в <math>X</math>) дополнение. <math>f</math> берётся как естественное вложение <math>X</math> в <math>Y</math>. <math>(Y, f)</math> тогда компактификация, причём <math>Y</math> хаусдорфово тогда и только тогда, когда <math>X</math> [[Хаусдорфово пространство|хаусдорфово]] и [[локально компактное пространство|локально компактно]].
 
 
== Примеры одноточечной компактификации ==
 
<math>\R \cup \{\infty\}</math> с топологией, сконструированной как указано выше, является компактным пространством. Не трудно доказать, что если два пространства гомеоморфны, то и соотвествующие одноточечные компактификации гомеоморфны. В частности, т.к. окружность на плоскости без одной точки гомеоморфна с <math>\R</math> (пример гомеоморфизма - [[стереографическая проекция]]), целая окружность гомеоморфна с <math>\R \cup \{\infty\}</math>. Аналогично, <math>\mathbb R^n \cup \{\infty\}</math> гомеоморфно c <math> S^n </math>.
 
 
[[Категория:Общая топология]]