Difference between revisions of "Наивная теория множеств"

no edit summary
(орфография)
[[Файл:Diagonal argument.svg|thumb|Схема доказательства счётности множества рациональных чисел]]
[[Файл:Cantor-bernstein.svg|thumb|Схематическая идея доказательства теоремы Кантора — Бернштейна]]
'''Наи́вная тео́рия мно́жеств''' — раздел математики, в котором изучаются общие свойства множеств. Основным создателем теории множеств в ''наивном'' её варианте является немецкий математик [[Кантор, Георг|Георг Кантор]], к созданию абстракции точечного множества подтолкнули работы 1870—1872 годов по развитию теории [[Тригонометрический ряд|тригонометрических рядов]] (продолжавшие труды [[Риман, Георг Фридрих Бернхард|Римана]]), в которых вводит понятие [[Предельная точка|предельной точки]], близкое к современному{{Sfn|Медведев|1965|с=86—87}}, и пытается с его помощью классифицировать «исключительные множества» (множества точек расходимости ряда, возможно бесконечные){{Sfn|Бурбаки|1963|c=40}}. Заинтересовавшись вопросами равномощности множеств, в [[1873 год в науке|1873 году]] Кантор обнаруживает [[Счётное множество|счётность]] множества [[Рациональное число|рациональных чисел]] и {{нп5|Первое доказательство несчётности множества вещественных чисел|решает отрицательно|en|Cantor's first uncountability proof}} вопрос о равномощности множеств [[Целое число|целых]] и [[Вещественное число|вещественных чисел]] (последний результат публикует в 1874 году по настоянию [[Вейерштрасс, Карл|Вейерштрасса]]{{Sfn|Медведев|1965|с=94—95}}{{Sfn|Кантор|1985|с=18—21|loc=2. Об одном свойстве совокупности всех алгебраических чисел. Оригинал: [http://www.digizeitschriften.de/main/dms/img/?PPN=GDZPPN002155583 Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen.] — Journal für die Reine und Angewandte Mathematik, 77 (1874), p. 258—262}}). В [[1877 год в науке|1877 году]] Кантор доказывает взаимно-однозначное соответствие между [[Вещественное число|<math>\mathbb R</math>]] и <math>\mathbb R^n</math> (для любого <math>n>0</math>). Первыми результатами Кантор делится в переписке с Дедекиндом и Вейерштрассом, которые отвечают благосклонной критикой и замечаниями к доказательствам, и начиная с [[1879 год в науке|1879 года]] вплоть до 1884 года публикует шесть статей в [[Mathematische Annalen]] с результатами исследований бесконечных точечных множеств{{Sfn|Кантор|1985|с=40—141|loc=5. О бесконечных линейных точечных многообразиях. Оригинал: Über unendliche, lineare Punktmannichfahltigkeiten. — Mathematische Annalen, Bd. 15 (1879), 17 (1880), 20 (1882), 21 (1883), 23 (1884)}}{{sfn|Бурбаки|1963|c=40—41}}.
 
В [[1877 год в науке|1877 году]] Дедекинд публикует статью «О числе классов идеалов конечного поля», в которой явно в символическом виде оперирует с множествами — [[Поле (алгебра)|полями]], [[Модуль над кольцом|модулями]], [[Идеал (алгебра)|идеалами]], [[Кольцо (алгебра)|кольцами]], и использует для них отношение включения (используя знаки «<» и «>»), операции объединения (со знаком «+») и пересечения (с инфиксом «−»), и, кроме того, фактически приходит к алгебре множеств, указывая на [[Принцип двойственности (теория множеств)|двойственность]] операций объединения и пересечения, в обозначениях Дедекинда:
Anonymous user