Поле (физика): различия между версиями

[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
м replaced: ее → её (3), нее → неё
Строка 6:
В [[Квантовая теория поля|квантовой теории поля]] — полевая переменная может рассматриваться формально подобно тому, как в обычной квантовой механике рассматривается пространственная координата, и полевой переменной сопоставляется [[оператор физической величины|квантовый оператор]] соответствующего названия.
 
''Полевая парадигма'', представляющая всю физическую реальность на фундаментальном уровне сводящейся к небольшому количеству взаимодействующих (квантованных) полей, является не только одной из важнейших в современной физике, но, пожалуй, безусловно главенствующей<ref>Несмотря на наличие более или менее удаленных от еееё стандартного варианта альтернативных концепций или переинтерпретаций, которые однако не могут пока ни получить решительного перед ней преимущества или даже равенства с ней (не выходя, как правило, за пределы достаточно маргинальных явлений переднего края теоретической физики), ни, как правило, слишком далеко от неенеё удалиться, оставляя ей в целом всё же (пока) центральное место.</ref>.
 
* Проще всего наглядно представить себе поле (когда речь идет, например, о фундаментальных полях, не имеющих очевидной непосредственной механической природы<ref>В отличие от упомянутого несколько ниже класса физических полей из физики сплошных сред, имеющих достаточно наглядную природу сами по себе, упоминаемых в статье дальше.</ref>) как возмущение (отклонение от равновесия, движение) некоторой (гипотетической или просто воображаемой) сплошной среды, заполняющей всё пространство. Например, как деформацию упругой среды, уравнения движения которой совпадают с или близки к полевым уравнениям того более абстрактного поля, которое мы хотим наглядно себе представить. Исторически такая среда называлась эфиром, однако впоследствии термин практически полностью вышел из употребления<ref>По разным историческим причинам, не последней из которых была та, что концепция эфира психологически подразумевала достаточно конкретную реализацию, которая могла бы дать экспериментально проверяемые следствия, однако в реальности физически наблюдаемых нетривиальных следствий некоторых из подобных моделей не было обнаружено, следствия же из других прямо противоречили эксперименту, поэтому концепция физически реального эфира постепенно была признана излишней, а вместе с ней вышел из употребления в физике и сам термин. Не последнюю роль в этом сыграла такая причина: в момент пика обсуждения применимости концепции эфира к описанию электромагнитного поля "материя", "частицы" считались объектами принципиально другой природы, поэтому их движение через пространство, заполненное эфиром, представлялось немыслимым или представимым с огромными трудностями; впоследствии эта причина по сути перестала иметь место в связи с тем, что материя и частицы стали описываться также как полевые объекты, но к этому времени слово ''эфир'' было уже почти забыто в качестве актуального понятия теоретической физики.</ref>, а его подразумеваемая физически содержательная часть слилась с самим понятием поля. Тем не менее, для принципиального наглядного понимания концепции физического поля в общих чертах такое представление полезно, с учетом того, что в рамках современной физики такой подход обычно принимается по большому счету лишь на правах иллюстрации.<ref>Хотя в некоторых работах современных теоретиков иногда использование понятия эфира бывает глубже - см. Поляков А.М. "Калибровочные поля и струны".</ref>
Строка 94:
Примером такого гипотетического поля является [[поле Хиггса]], являющееся важным в [[Стандартная модель|Стандартной модели]], остальные поля которой отнюдь не являются гипотетическими, а сама модель, пусть и с неизбежными оговорками, считается описывающей реальность (по крайней мере, до той степени, в какой реальность известна).
 
Существует множество теорий, содержащих поля, которые (пока) никогда не наблюдались, а иногда сами же эти теории дают такие оценки, что их гипотетические поля по-видимому (из-за слабости их проявления, следующей из самой теории) и не могут в принципе быть обнаружены в обозримом будущем (например, [[торсионное поле]]). Такие теории (если не содержат, кроме практически непроверяемых, еще и достаточного количества легче проверяемых следствий) не рассматриваются как представляющие практический интерес, если только не всплывет какой-то нетривиальный новый способ их проверки, позволяющий обойти очевидные ограничения. Иногда же (как, например, во многих [[Альтернативные теории гравитации|альтернативных теориях гравитации]] — например, [[Теория Дикке|поле Дикке]]) вводятся такие гипотетические поля, о силе проявления которых сама теория вообще не может ничего сказать (например, константа связи этого поля с другими неизвестна и может быть как довольно большой, так и сколь угодно малой); с проверкой таких теорий обычно также не торопятся (поскольку таких теорий много, а своей полезности каждая из них ничем не доказала, и даже формально [[фальсифицируемость|нефальсифицируема]]), за исключением случаев, когда какая-то из них не начинает по каким-то причинам казаться перспективной для разрешения каких-то текущих затруднений (впрочем, от отсеивания теорий на основании нефальсифицируемости — особенно из-за неопределенных констант — тут иногда отказываются, т.к. серьезная добротная теория иногда может быть проверена в надежде, что еееё эффект обнаружится, хотя гарантий этого и нет; особенно это верно, когда теорий-кандидатов вообще немного или некоторые из них выглядят особенно фундаментально интересными; также — в случаях, когда можно проверять теории широкого класса все сразу по известным параметрам, не тратя специальных усилий на проверку каждой в отдельности).
 
Следует также заметить, что принято называть гипотетическими лишь такие поля, которые совсем не имеют наблюдаемых проявлений (или имеют их недостаточно, как в случае с полем Хиггса). Если же существование физического поля твердо установлено по его наблюдаемым проявлениям, и речь идет лишь об улучшении его теоретического описания (например, о замене ньютоновского гравитационного поля на поле метрического тензора в [[ОТО]]), то говорить о том или другом как о гипотетических обычно не принято (хотя для ранней ситуации в ОТО можно было говорить о гипотетическом характере тензорной природы гравитационного поля).
 
В заключение упомянем о таких полях, сам тип которых достаточно необычен, т.е. теоретически вполне мыслим, но никакие поля подобных типов никогда не наблюдались на практике (а в некоторых случаях на ранних этапах развития их теории могли возникать и сомнения в еееё непротиворечивости). К таким, прежде всего, следует отнести [[тахион|тахионные поля]]. Собственно, тахионные поля можно назвать скорее лишь потенциально гипотетическими (то есть не достигающими статуса ''обоснованного предположения''), т.к. известные конкретные теории, в которых они играют более или менее существенную роль, например, [[теория струн]], сами не достигли статуса достаточно подтвержденных.<ref>Эти утверждения справедливы в отношении фундаментальных полей тахионного типа. Макроскопические системы, обладающие свойствами тахионных полей не являются чем-то необычным; то же можно предположить и о некоторых типах возбуждений в кристаллах итп (в том и другом случае место скорости света - занимает другая величина).</ref>
 
Еще более экзотические (например, [[Лоренц-инвариантность|лоренц-неинвариантные]] — нарушающие [[принцип относительности]]) поля (при том, что абстрактно-теоретически вполне мыслимы) в современной физике можно отнести к стоящим уже достаточно далеко за рамками аргументированного предположения, то есть, строго говоря, их не рассматривают даже в качестве [[гипотеза|гипотетических]]<ref>Это описание того положения, которое существует на настоящий момент. Конечно же, они не означает принципиальной невозможности появления вполне достаточно мотивированных теорий, включающих такого рода экзотические поля в будущем (впрочем, вряд ли следует считать такую возможность и слишком вероятной).</ref>.