Изогональное сопряжение: различия между версиями

* Если точки <math>P_a</math>, <math>P_b</math>, <math>P_c</math> симметричны точке <math>P</math> относительно сторон треугольника, то центр ''описанной окружности'' <math>P_aP_bP_c</math> ''изогонально сопряжён'' точке <math>P</math>.
* Если в треугольник вписан [[эллипс]], то его фокусы ''изогонально сопряжены''.
 
* Образ прямой при ''изогональном сопряжении'' — [[коническое сечение|коника]], описанная около треугольника. В частности, ''изогонально сопряжены'' бесконечно удалённая прямая и [[описанная окружность]], [[прямая Эйлера]] и [[гипербола Енжабека]], [[ось Брокара]] и [[гипербола Киперта]], линия центров ''вписанной'' и ''описанной'' окружности и [[гипербола Фейербаха]].
* Если ''коника'' <math>\alpha</math> ''изогонально сопряжена'' прямой <math>l</math>, то [[Трилинейная поляра|трилинейные поляры]] всех точек на <math>\alpha</math> будут проходить через точку, ''изогонально сопряжённую'' трилинейному полюсу <math>l</math>.
* Проекции двух ''изогонально сопряжённых'' точек на стороны лежат на одной окружности (верно и обратное) <ref>{{книга|
| автор = Зетель С.И.
| страницы = 97, п. 80
}}</ref>.
 
=== Пары изогонально сопряженных линий ===
* Образ прямой при ''изогональном сопряжении'' — [[коническое сечение|коника]], описанная около треугольника. В частности, ''изогонально сопряжены'' бесконечно удалённая прямая и [[описанная окружность]], [[прямая Эйлера]] и [[гипербола Енжабека]], [[ось Брокара]] и [[гипербола Киперта]], линия центров ''вписанной'' и ''описанной'' окружности и [[гипербола Фейербаха]].
* Если ''коника'' <math>\alpha</math> ''изогонально сопряжена'' прямой <math>l</math>, то [[Трилинейная поляра|трилинейные поляры]] всех точек на <math>\alpha</math> будут проходить через точку, ''изогонально сопряжённую'' трилинейному полюсу <math>l</math>.
* Некоторые известные кубики, например, кубика Томпсона, кубика Дарбу, кубика Нейберга (Thompson cubic, Darboux cubic, Neuberg cubic) изогонально самосопряжены в том смысле, что при изогональном сопряжении всех их точек в треугольнике снова получаются кубики {{sfn|Isogonal conjugate = Изогональное сопряжение (англ. яз.)// https://en.wikipedia.org/wiki/Isogonal_conjugate}}.
 
== Пары изогонально сопряжённых точек ==
Анонимный участник